

Integration Guide

BACnet® and Modbus Integration to Ascend[™] Air-Cooled Chiller Model ACR

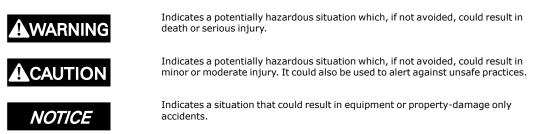
with Symbio[™] 800 Controls

A SAFETY WARNING

Only qualified personnel should install and service the equipment. The installation, starting up, and servicing of heating, ventilating, and air-conditioning equipment can be hazardous and requires specific knowledge and training. Improperly installed, adjusted or altered equipment by an unqualified person could result in death or serious injury. When working on the equipment, observe all precautions in the literature and on the tags, stickers, and labels that are attached to the equipment.

BAS-SVP045B-EN

TECHNOLOGIES


Introduction

Read this manual thoroughly before operating or servicing this unit.

Warnings, Cautions, and Notices

Safety advisories appear throughout this manual as required. Your personal safety and the proper operation of this machine depend upon the strict observance of these precautions.

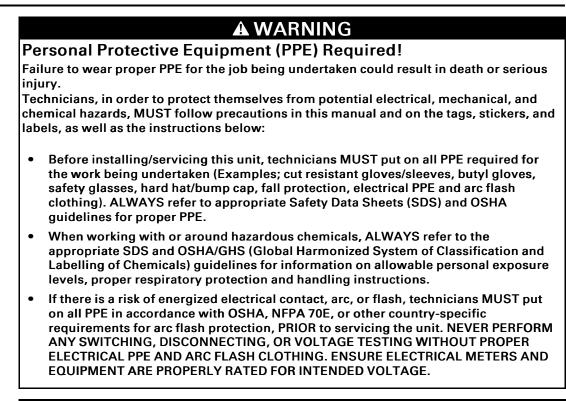
The three types of advisories are defined as follows:

Important Environmental Concerns

Scientific research has shown that certain man-made chemicals can affect the earth's naturally occurring stratospheric ozone layer when released to the atmosphere. In particular, several of the identified chemicals that may affect the ozone layer are refrigerants that contain Chlorine, Fluorine and Carbon (CFCs) and those containing Hydrogen, Chlorine, Fluorine and Carbon (HCFCs). Not all refrigerants containing these compounds have the same potential impact to the environment. Trane advocates the responsible handling of all refrigerants-including industry replacements for CFCs and HCFCs such as saturated or unsaturated HFCs and HCFCs.

Important Responsible Refrigerant Practices

Trane believes that responsible refrigerant practices are important to the environment, our customers, and the air conditioning industry. All technicians who handle refrigerants must be certified according to local rules. For the USA, the Federal Clean Air Act (Section 608) sets forth the requirements for handling, reclaiming, recovering and recycling of certain refrigerants and the equipment that is used in these service procedures. In addition, some states or municipalities may have additional requirements that must also be adhered to for responsible management of refrigerants. Know the applicable laws and follow them.


A WARNING

Proper Field Wiring and Grounding Required!

Failure to follow code could result in death or serious injury.

All field wiring MUST be performed by qualified personnel. Improperly installed and grounded field wiring poses FIRE and ELECTROCUTION hazards. To avoid these hazards, you MUST follow requirements for field wiring installation and grounding as described in NEC and your local/state/national electrical codes.

A WARNING

Follow EHS Policies!

Failure to follow instructions below could result in death or serious injury.

- All Trane personnel must follow the company's Environmental, Health and Safety (EHS) policies when performing work such as hot work, electrical, fall protection, lockout/tagout, refrigerant handling, etc. Where local regulations are more stringent than these policies, those regulations supersede these policies.
- Non-Trane personnel should always follow local regulations.

Copyright

This document and the information in it are the property of Trane, and may not be used or reproduced in whole or in part without written permission. Trane reserves the right to revise this publication at any time, and to make changes to its content without obligation to notify any person of such revision or change.

Trademarks

All trademarks referenced in this document are the trademarks of their respective owners.

Table of Contents

Overview
Purpose
Symbio 800 Controller Overview
Communication Options 5
Units of Measure
Communication Setup and Configuration
Service Tool for Symbio™ 800 Configuration6
Connecting to the Symbio™ 800 Web Interface6
BACnet Protocol Configuration
BACnet TP Protocol Settings 8
BACnet/IP (Ethernet or Wi-Fi connectivity)
Manually Change Symbio™ 800 BACnet Device ID
BACnet Points List
Object Naming Conventions
Object Data Points and Diagnostic Data Points
ACRB 350–500 Tons Data Points
Recycled Points
Modbus Protocol Configuration
Modbus Protocol Settings
Modbus Wiring
Modbus TCP (Ethernet)
Modbus Points List
Object Naming Conventions
Object Data Points and Diagnostic Data Points
ACRB 150–300 Tons Data Points
Recycled Points
Arbitration
Symbio™ 800 Controller DisplayB–1
-,

Overview

Purpose

The purpose of this document is to provide instructions for integrating the Symbio[™] 800 controller into Non-Trane building automation systems. This document is targeted to system integrators and controls contractors.

Symbio 800 Controller Overview

The Trane Chiller includes the Symbio 800 controller. The controller has been installed, programmed, wired, commissioned, and tested in the factory prior to shipment. While some sensors and end devices are normally wired in the field, nearly all other wiring is factory-provided. Power for the controller is provided and connected from within the chiller control panel.

The chiller and associated controller can be applied as standalone or as part of a building automation system.

Note: For communicating applications to third-party control systems, network communication wiring must be provided by others.

Communication Options

The Symbio[™] 800 controller supports the following communication protocol options for integration to either Trane or Non-Trane control systems:

- BACnet TP
- BACnet Zigbee (Air-Fi)®
- BACnet/IP
 - Ethernet
 - Wi-Fi
- Modbus RTU
- Modbus TCP
- LonTalk

For information pertaining to the integration of the Symbio[™] 800 controller using either Modbus or LonTalk communication, refer to the integration guides specific to those applications.

Units of Measure

The communicated data of the Symbio[™] 800 controller will be passed in the factory-configured units of measure, either inch-pound (I-P) or the International System of Units (SI). The units of measure are selected as part of the unit order (the default selection is normally I-P). Should the units of measure need to be changed in the field, contact your local Trane representative.

The Symbio 800 controller provides a browser-based user interface for USB connection to the controller. One of the tools provided with that interface allows the user to change and customize the Data Display Units Preferences.

Important: These adjustable settings are applied only to the units of measured displayed in the web interface, not the communicated interface.

Regardless of the communicated (system) units of measure, the user may change the displayed units of measure on their smart device. These user preference units of measure are independent of the communicated units.

Communication Setup and Configuration

The Symbio[™] 800 controller can be factory ordered with a specific protocol configuration and rotary address setting. If communication options were not specified, the Symbio[™] 800 controller will be setup for BACnet TP communications at 76,800 bps with a rotary address setting of 000.

Figure 1. Symbio™ 800 rotary address and service tool port

Service Tool for Symbio[™] 800 Configuration

The service tool used to modify the SymbioTM 800 controller is a standard web browser. The SymbioTM 800 webpage is accessed by using a standard USB type A/B cable. Connect the USB cable between a laptop and the service tool port on the SymbioTM 800 controller (shown in Figure 1, p. 6).

Connecting to the Symbio[™] 800 Web Interface

- 1. Connect a laptop to the Symbio[™] 800 controller using a USB cable.
- 2. On the laptop, open a web browser to http://198.80.18.1/
- 3. When the Symbio[™] 800 page displays, click Log In.

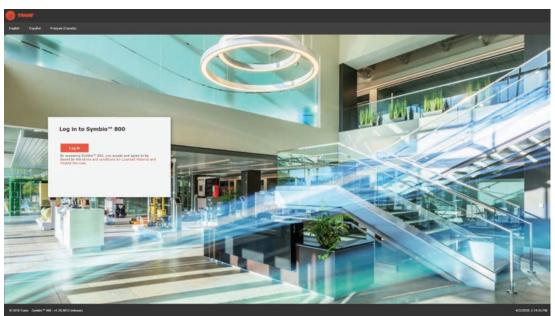


Figure 2. Symbio[™] 800 log in screen

Note: The Symbio[™] 800 web interface can only be viewed using the USB connection. Ethernet port 1 and Ethernet port 2 will not allow access to the Symbio[™] web server to meet IT security requirements.

BACnet Protocol Configuration

To access the Symbio[™] 800 Protocol Configuration page:

- 1. Connect to the Symbio[™] 800 web interface.
- 2. On the left-hand navigation, click Installation.
- 3. Click Identification and Communications.

Figure 3. Identification and Communications

Installation

Symbio 800 Function	
Symbio 800 Name IP Address Host Name This Symbio 800 Functions As	Symbio 800 192.168.4.15 Symbio-E18L01166 Standalone Symbio 800
1. Configure Basic Settings	For This Symbio 800
Task	Description
Regional Specifications	Change the time zone, date, and time.
Symbio 800 System Units	View the Symbio 800 system units.
Identification and Communications	Change and specify equipment name, location name, BACnet addressing, IP addressing and Network Connectivity settings for the Symbio 800.
USB Ports and microSD	View USB Ports and microSD status and safely unmount devices.
Licensing	License the Symbio 800.

4. Click the Protocol Configuration tab.

Figure 4. Protocol Configuration

Identification and Communications

< Installation Edit					
Symbio 800 Identification	Protocol Configuration	Air-Fi Configuration	IP Configuration	Intelligent Services	Network Connectivity and SSL
Name	Symbio 800				
Location	222				
Description	222				
Equipment Serial Number	150				
Equipment Model Number	1000				
Equipment Order Number	576				

5. Click **Edit** to change the Protocol Configuration settings. See the sections below for details on editing BACnet TP, BACnet IP, and BACnet Air-Fi protocols.

BACnet TP Protocol Settings

The rotary address on the Symbio[™] 800 controller sets the BACnet TP MAC address. Each BACnet TP device on the same TP link must have a unique MAC address. The valid range of BACnet TP MAC addresses for the Symbio[™] 800 is: **001–127**.

Important: The Symbio[™] 800 controller will disable BACnet TP communications if the rotary address is 000!

Changing the rotary address will immediately take affect and does NOT require a power cycle to

the Symbio[™] 800 controller.

The rotary address also sets the BACnet Device ID which gives a range of **1-127**. All BACnet devices must have a unique BACnet Device ID. The Symbio[™] 800 BACnet Device ID can also be manually changed using a web browser, the Tracer SC+ system controller, or Tracer TU.

To configure the Symbio[™] 800 for BACnet TP protocol:

- 1. Set the System Protocol drop-down to **BACnet TP**.
- 2. Verify the **Baud Rate** (default is 76,800 bps). All BACnet TP devices on an TP link must communicate at the same baud rate.
- 3. Verify the **Current Device ID**. To change the device ID, click **Use Software Device ID** and enter the desired device ID. The valid device ID range using a software device ID is 1–4194302 as defined by the BACnet standard.

Figure 5. BACnet TP protocol settings

Identification and Communications

Installation Edit			
Symbio 800 Identification Protocol Configu	ration Air-Fi Configuration IP Configuration Intelligent	Services Network Connectivity and SSL	
System Protocol			
BACnet MS/TP - 1 Baud Rate 76800 bps -			
BACnet Configuration			
Device ID Information		Advanced	
Current Device ID Rotary Dial Setting 2 🗌 Use Software Device ID	3 4	BACnet Segment Timeout BACnet APDU Timeout BACnet APDU Retries	5000 10000 3
LON Settings			
Adapter Connection Status	Not Connected		
Neuron ID	448		
Link Status	Service Pin		

The BACnet TP communication wire is connected to the P1 Link. Observe wire polarity when connecting to the + and – terminals. The + terminals and the – terminals are internally connected. The second set of + and – terminals on the P1 Link are used to make it easier to wire the next BACnet TP device in the daisy chain.

Refer to the BACnet standard or BACnet® TP Wiring and Link Performance Best Practices and Troubleshooting guide BAS-SVX51–EN for detailed information on TP wiring.

BACnet/IP (Ethernet or Wi-Fi connectivity)

The Symbio[™] 800 controller can communicate BACnet/IP using a standard Ethernet cable or using Wi-Fi (with the optional USB to Wi-Fi adapter).

If using BACnet/IP using a standard Ethernet cable, connect the Ethernet cable with RJ-45 connectors to Ethernet port 1 and the BACnet network. If using BACnet/IP communication using Wi-Fi, the optional USB to Wi-Fi adapter should be connected to one of the USB ports.

Note: It is strongly recommended to only use the Ethernet 1 connection or the Wi-Fi adapter.

Set up the IP address of the Symbio™ 800 controller before changing other BACnet/IP

configuration parameters.

1. On the Identification and Communications page, click the **IP Configuration** tab.

Figure 6. IP Configuration tab

Identification and Communications

nstellation Edit				
mbio 800 Identification Protocol Configuration	Air-Fi Configuration IP Configuration Intelligent Services	Network Connectivity and SSL		
t Name Symbio-E18L01166				
Ethernet 1		Ethernet 2 (Connection to)	TD-7 operator display)	
Ethernet 1 Method for Obtaining IP Address	Specified Static address used	Ethernet 2 (Connection to	TD-7 operator display)	
Method for Obtaining IP Address	Specified Static address used 00:12:EA:0E:3D:89			
Ethernet 1 Method for Obtaining IP Address MAC Address IP Address		IP Address	198.80.18.9	
Method for Obtaining IP Address MAC Address	00:12:EA:0E:3D:89			

2. Click Edit.

Figure 7. Edit IP configuration

Identification and Communications

mbio 800 Identifi	ication I	Protocol Co	nfiguration	Air-Fi Configuration	IP Configuration	Intelligent Services	Network Connectivity and SSL
ost Name	Symbio-E181	.01166					
Ethernet 1							
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~							
Obtain IP Addr	ess Automat	ically using	DHCP				
			DHCP				
Use the followi	ng IP addre:						
Obtain IP Addr Use the followi IP Address Subnet Mask	ng IP addres	s	. 15				

Luienier z (connection to TD 7	operator
IP Address	198 . 80 . 1	8.9
Subnet Mask	255 . 255 . 25	5 252
Subjection	233 . 233 . 23	. 252

- 3. For BACnet/IP using Ethernet cable connection only:
 - a. Setup the Ethernet 1 port to either **Obtain an IP Address Automatically using DHCP** or use a static IP address by manually entering the IP address, subnet mask, and default.
 - b. Set the Preferred IP Interface to Ethernet 1.
 - c. Setup the DNS section if using a Domain Name System server to identify the Symbio™ 800 controller by host name.
- 4. For BACnet/IP using the Wi-Fi connection only:
 - a. Check Enable the Wi-Fi network connection and click Save.

Figure 8. Enable Wi-Fi network connection

Identification and Communications

lost Name Sy	mbio-E18L01166					
Ethernet 1			 	 	 	
Obtain IP Addres	ss Automatically using DHCP					
Use the following	g IP address					
Address	192 . 168 . 4 . 15					
bnet Mask	255 . 255 . 255 . 0					
fault Gateway	192 . 168 . 4 . 1					
_	ection to TD-7 operator displa	v)	 			
Address 198	ection to TD-7 operator displa 8 . 80 . 18 . 9 5 . 255 . 255 . 252	v)				
Address 198 bnet Mask 255	8 . 80 . 18 . 9	v)				
Address 198 bnet Mask 255 -Fi Network	8 . 80 . 18 . 9	v)				
Address 198 ubnet Mask 255 I-Fi Network	8 . 80 . 18 . 9 5 . 255 . 255 . 252	v)				

b. Click Wi-Fi Setup.

Figure 9. Wi-Fi Setup

st Name Symbio-E20A01392			
Ethernet 1			
themet 1		Ethernet 2 (Connection to TD-7 operator display)	
Method for Obtaining IP Address MAC Address IP Address Subnet Mask	Specified Static address used 00:12:EA:00:E82:B3 193.168:1.100 255.255.255.0	IP Address 198.80.18.9 Subnet Mask 255.255.255.255	
Wi-Fi Network			
Port State Method for Obtaining IP Address MAC Address	Enabled Specified Static address used 00:23:A7:F6:5A:80		
IP Address	195.80.18.65		
Subnet Mask	255.255.255.192	Wi-fi Setup	
Default Gateway	P40		
WI-FI Host Status			
Device Name	IP Address	MAC Address	

- c. Click Client Mode (Station) to join an existing Wi-Fi access point. Click Next.
- d. Select the Wi-Fi network or type the SSID of the hidden access point. Click Next.
- e. Enter the security parameters for the chosen access point. Contact the local IT

administrator of the chosen access point for security parameters.

- f. Click Finish and verify connectivity to the access point.
- g. Set the Preferred IP Interface to Wi-Fi Network.
- h. Setup the DNS section if using a Domain Name System server to identify the Symbio[™] 800 controller by host name.

Manually Change Symbio[™] 800 BACnet Device ID

The rotary address on the Symbio[™] 800 controller sets the BACnet Device ID which gives a range of **1-999.** All BACnet devices must have a unique BACnet Device ID. The Symbio[™] 800 BACnet Device ID can also be manually changed using a web browser or the Tracer SC+ system controller.

Figure 10. Protocol Configuration

Identification and Communications

CInstallation Edit	
Symbio 800 Identification Protocol Configuration Air-Fi Configuration IP Configuration Intelligent Ser	rvices Network Connectivity and SSL
System Protocol	
BACnet/IP -	
BACnet Configuration	
Device ID Information	Advanced
Current Device ID 4	BACnet Segment Timeout 5000
Rotary Dial Setting 4	BACnet APDU Timeout 10000
Use Software Device ID .4	BACnet APDU Retries 3
F	
BACnet/IP Configuration	
Network Connection Ethernet 1 -	
UDP Port 47808	
BBMD	

- 1. Set the System Protocol drop down to BACnet/IP.
- 2. Verify the current Device ID. To change the Device ID, click **Use Software Device ID** and enter the desired Device ID. Most installations will not need to manually change the BACnet Device ID.

Note: The valid Device ID range using a software Device ID is 1 – 4194302 as defined by the BACnet standard.

3. If using an Ethernet cable, set the Network Connection to **Ethernet 1**. If using the USB to Wi-Fi adapter, set the Network Connection to **Wi-Fi**.

Figure 11. Network Connection

Identification and Communications

Installation Edit ymbio 800 Identification Protocol Configur	ration Air-Fi Configuration IP Configuration	Intelligent Services Network Connectivity and SSL	
BACnet/IP +			
ACnet Configuration			
Device ID Information		Advanced	ĭ
Current Device ID	34	BACnet Segment Timeout	5000
Rotary Dial Setting	4	BACnet APDU Timeout	10000
Use Software Device ID	4	BACnet APDU Retries	3
Crect/IP Configuration Ethernet 1 + Ethernet 1 UDP Port BBMD BBMD			
N Settings			
dapter Connection Status euron ID	Not Connected		
ink Status	service Pin		
			Save Co

- 4. Set the UDP Port to match the port number used by the BACnet/IP network. The default is 47808.
- 5. Check the BBMD checkbox only if the Symbio[™] 800 controller is the only BACnet/IP device on the IP subnet.
 - a. If a change to the BBMD checkbox was made, click **Save** and refresh the web browser. If BBMD functionality is enabled, the BDT setup button displays.

Figure 12. BDT setup

work Connection	Ethernet 1	
UDP Port	47808	
BBMD	Enabled	BDT Setup

- b. If BBMD functionality is enabled, click BDT Setup to set up the BACnet Distribution Table (BDT). The IP addresses of all BBMDs in the BACnet intranetwork should be in the BDT. and all BBMDs should have the same BDT entries.
 - *Important:* A strong knowledge of BACnet networking is needed to properly setup BBMD and BDT functionality.

For additional information on BBMDs and BDTs, refer to the BACnet specification or your local Trane office.

Air-Fi® Wireless

Air-Fi Wireless – Conforms to ANSI/ASHRAE Standard 135-2016 (BACnet®/ZigBee®/). Air-Fi Wireless provides reliable and secure, and location-flexible communication between equipment controls, sensors, and service tools to the system controller.

Air-Fi networks will be setup by a Trane technician. Integration to a Symbio[™] 800 controller setup for Air-Fi communications uses BACnet/IP communication through a Tracer SC+ system controller. Contact your local Trane office for additional information if the Symbio[™] 800 controller is setup for Air-Fi Wireless.

^{1.} ZigBee is a registered trademark of the ZigBee Alliance.

BACnet Points List

Object Naming Conventions

The communicated points for the Symbio[™] controllers are generally named according to their function. While many of the points are read-only, others include both read and write capability. The established naming convention helps to identify the capabilities of each point. For most points, the suffix identifies the capability according to the following definition.

While there are some exceptions, the majority of the points have been defined according to these guidelines.

Suffix	Description
Status	Points with the Status suffix are defined as read-only. The status point reports the value being used by the controller.
Local	Points with the Local suffix are defined as read-only. The local point reports values associated with controller sensors, both wired and wireless. The local value may or may not be actively used by the controller, depending on the presence or absence of a communicated value (BAS). When both a local and communicated value exist, the communicated value is used.
Active	Points with the Active suffix are defined as read-only. Points designated as active are normally the result of the arbitration between a communicated value (BAS) and at least one value local to the equipment, such as a sensor or default setpoint. The active point reports the value being used by the controller.
Setpoint	Points with the Setpoint suffix are defined as either read-only or read/write. For BACnet, the binary input, analog input and multi-state input points are all read- only. These setpoints report the value currently in use by the controller. The analog value, binary value and multi-state value points are all read/write. These points are provided for use by the building automation system (BAS). When used, these points are written internally to arbitration logic. This defines the interaction with hardwired points, editable software configuration points and the relinquish default value/state. Refer to the Appendix for additional information.
Input	Points with the Input suffix are defined as read-only. These points normally reflect the status of a sensor input, either hardwired or communicating wirelessly (Air- Fi). However, the input point reflects the arbitrated result of the controller sensor input and a communicated value, if present. When both a controller sensor and communicated value exist, the controller will use and report the communicated value.
Arbitrator	Points with the "Arbitrator" suffix are to be used as read-only. The arbitrator prioritizes inputs from communicating points, hardwired points and stored defaults points. The priority array of the arbitration point displays each of the values provided, including the active status, indicating which of the input sources is being used. Refer to the Appendix for additional information.
BAS	Points with the BAS suffix are defined as read/write. These points are provided for use by the building automation system (BAS). When used, these points are written to arbitration logic. This defines the interaction with hardwired points, editable software configuration points and the relinquished default value/state. Refer to the Appendix for additional information.
Command	Points with the Command suffix are defined as read/write. These points are written to change the default behavior of the controller. Once written, these point values may be persisted.
Request	Points with the Request suffix are defined as read/write. These points are written to change the operating behavior of the controller.

Object Data Points and Diagnostic Data Points

The following tables are sorted as follows:

• Tables are listed by input/output type and sorted by object identifier. These tables provide the user with the units type for each object type.

• Tables are sorted by object name and provide a complete list of object names, types, values/ ranges, and descriptions.

Note: Not all points are available to the user. The available data points are defined during self-configuration and are dependent on the type of equipment.

ACRB 150–300 Tons Data Points

Table 1. ACRB 150–300 tons analog inputs

Object Identifier	Object Name	Description	Units
AI-10100	Active Chilled Water Setpoint	Indicates the value of the active Chilled Water Setpoint actively being used by the chiller	Degrees Fahrenheit
AI-10101	Evaporator Entering Water Temperature	Indicates the current temperature of the water entering the evaporator	Degrees Fahrenheit
AI-10102	Evaporator Leaving Water Temperature	Indicates the current temperature of the water leaving the evaporator	Degrees Fahrenheit
AI-10103	Calculated Chiller Capacity	Indicates the capacity the chiller is currently using	Tons of Refrigeration
AI-10104	Active Demand Limit Setpoint	Indicates the demand limit setpoint value actively being used by the chiller	Percent
AI-10105	Unit Power Consumption	Indicates the measurement of the power being consumed by the Chiller	Kilowatts
AI-10106	Outdoor Air Temperature	Indicates the current temperature of the outdoor air	Degrees Fahrenheit
AI-10107	Evaporator Refrigerant Pressure Circuit 1	Indicates the current pressure of the refrigerant in the evaporator on circuit 1	Pound Force per Square Inch
AI-10108	Condenser Refrigerant Pressure Circuit 1	Indicates the current pressure of the refrigerant in the condenser on circuit 1	Pound Force per Square Inch
AI-10109	Differential Refrigerant Pressure Circuit 1	Indicates the pressure difference between the suction and discharge lines on circuit 1	Pound Force per Square Inch
AI-10110	Evaporator Saturated Refrigerant Temperature Circuit 1	Indicates the saturated_x000D_ refrigerant temperature of the evaporator on circuit 1	Degrees Fahrenheit
AI-10111	Condenser Saturated Refrigerant Temperature Circuit 1	Indicates the saturated_x000D_ refrigerant temperature of the condenser on circuit 1	Degrees Fahrenheit
AI-10112	Evaporator Refrigerant Pressure Circuit 2	Indicates the current pressure of the refrigerant in the evaporator on circuit 2	Pound Force per Square Inch
AI-10113	Condenser Refrigerant Pressure Circuit 2	Indicates the current pressure of the refrigerant in the condenser on circuit 2	Pound Force per Square Inch
AI-10114	Differential Refrigerant Pressure Circuit 2	Indicates the pressure difference between the suction and discharge lines on circuit 2	Pound Force per Square Inch
AI-10115	Evaporator Saturated Refrigerant Temperature Circuit 2	Indicates the saturated_x000D_ refrigerant temperature of the evaporator on circuit 2	Degrees Fahrenheit
AI-10116	Condenser Saturated Refrigerant Temperature Circuit 2	Indicates the saturated_x000D_ refrigerant temperature of the condenser on circuit 2	Degrees Fahrenheit
AI-10117	Refrigerant Discharge Temperature - Compressor 1A	Indicates the current temperature of the refrigerant being discharged from Compressor 1A	Degrees Fahrenheit
AI-10118	Oil Pressure - Compressor 1A	Indicates the pressure of the oil on the high pressure side of Compressor 1A	Pound Force per Square Inch
AI-10119	Refrigerant Discharge Temperature - Compressor 2A	Indicates the current temperature of the refrigerant being discharged from Compressor 2A	Degrees Fahrenheit
AI-10120	Oil Pressure - Compressor 2A	Indicates the pressure of the oil on the high pressure side of Compressor 2A	Pound Force per Square Inch
AI-10121	Air Flow Percentage Circuit 1	Indicates the approximate air flow percentage of Circuit 1	Percent
AI-10122	Air Flow Percentage Circuit 2	Indicates the approximate air flow percentage of Circuit 2	Percent
AI-10123	Starts - Compressor 1A	Indicates the number of starts of Compressor 1A	No Units
AI-10124	Run Time - Compressor 1A	Indicates the run time of Compressor 1A, in hours	Hours
AI-10125	Compressor 1A Speed Status	Indicates the % of the available speed being used by Compressor 1A	Percent
AI-10126	Motor Winding Temperature 1 Circuit 1	Indicates the first temperaure sensor of the windings on motor 1A	Degrees Fahrenheit
AI-10127	Motor Winding Temperature 2 Circuit 1	Indicates the second temperaure sensor of the windings on motor 1A	Degrees Fahrenheit
AI-10128	Drive Motor Current U RLA Compressor 1A	Indicates the measurement of Line 1 current at AFD for Compressor 1A in terms of % RLA	Percent
AI-10129	Drive Motor Current V RLA Compressor 1A	Indicates the measurement of Line 2 current at AFD for Compressor 1A in terms of % RLA	Percent
AI-10130	Drive Motor Current W RLA Compressor 1A		
AI-10131	Drive Motor Average Current RLA Compressor 1A	Indicates the average current at AFD for Compressor 1A in terms of % RLA	Percent

AI-10147 Drive Inverter Base Temperature Circuit Indicates the temperature of the inverter base for the AFD for Compressor 1A Degrees Fahrenheit AI-10148 Drive Rectifier Base Temperature Circuit Indicates the temperature of the rectifier base for the AFD for Compressor 1A Degrees Fahrenheit AI-10149 Starts - Compressor 2A Indicates the temperature of starts of Compressor 2A Degrees Fahrenheit AI-10150 Run Time - Compressor 2A Indicates the run time of_x000D_Compressor 2A, in hours Hours AI-10151 Compressor 2A Speed Status Indicates the first temperature sensor of the windings on motor 2A Degrees Fahrenheit	Object Identifier	Object Name Description		Units
Al:1013 Unive motion Current W Compressor IA I a In terms of Amps Amps Al:1013 Drive Motor Current W Compressor IA Indicates the measurement of Voltage between Line 1 to 2 at the APD Volts Al:10135 Drive Motor Voltage UV Circuit I Indicates the measurement of Voltage between Line 2 to 3 at the APD Volts Al:10137 Drive Motor Voltage UV Circuit I Indicates the measurement of Voltage between Line 3 to 1 at the APD Volts Al:10137 Drive Motor Voltage UV Circuit I Indicates the average voltage line to line at APD for Compressor IA Volts Al:1013 Drive Motor Average Voltage Circuit I Indicates the power olution for the APD for Compressor IA Volts Al:1014 Drive Lower Circuit I Indicates the power input for the APD for Compressor IA Kilowatts Al:1014 Drive Lower Average Voltage Circuit I Indicates the average input voltage at the APD for Compressor IA Volts Al:1014 Drive Lower Average Voltage Circuit I Indicates the average input voltage at the APD for Compressor IA Volts Al:1014 Drive Lower Average Voltage Circuit I Indicates the average input voltage at the APD for Compressor IA Volts Al:10145 APD Frequency Circuit I	AI-10132	Drive Motor Current U Compressor 1A	1A in terms of Amps	Amps
Al:1014 Unive motor Voltage UV Circuit 1 Indicates the measurement of Voltage between Line 1 to 2 at the AFD Voltage Al:10135 Drive Motor Voltage UV Circuit 1 Indicates the measurement of Voltage between Line 1 to 2 at the AFD Volts Al:10136 Drive Motor Voltage UV Circuit 1 Indicates the measurement of Voltage between Line 3 to 1 at the AFD Volts Al:10137 Drive Motor Voltage UV Circuit 1 Indicates the voltage of the DC Bus from the AFD for Compressor 1A Volts Al:10140 Drive Motor Voltage Circuit 1 Indicates the voltage of the DC Bus from the AFD for Compressor 1A Volts Al:10140 Drive Output Power Circuit 1 Indicates the average input corten the AFD for Compressor 1A Kilowatts Al:10143 Drive Line Average Line Curcuit 1 Indicates the average input corten the AFD for Compressor 1A Kilowatts Al:10143 Drive Line Average Line Curcuit 1 Indicates the temperature of the transitor for AFD for Compressor 1A Feet per second Al:10143 Drive Line Average Line Curcuit 1 Indicates the temperature of the transitor for the AFD for Compressor 1A Feet per second Al:10144 Drive Inverter Base Temperature Circuit 1 Indicates the temperature of the transistor for the AFD for Compressor 1A Feet	AI-10133	Drive Motor Current V Compressor 1A	1A in terms of Amps	Amps
Air 1013 Drive Motor Voltage UV Circuit 1 for Compressor 1A Volts Air 10136 Drive Motor Voltage UV Circuit 1 Indicates the measurement of Voltage between Line 2 to 3 at the AFD Volts Air 10137 Drive Motor Voltage W Circuit 1 Indicates the measurement of Voltage between Line 3 to 1 at the AFD Volts Air 10138 Drive Motor Voltage W Circuit 1 Indicates the average voltage between Line 3 to 1 at the AFD Volts Air 10140 Drive DC Bus Voltage Circuit 1 Indicates the voltage of the DC Bus from the AFD for Compressor 1A Volts Air 10141 Drive Drupt Power Circuit 1 Indicates the average input corrent at the AFD for Compressor 1A Kilowatts Air 10143 Drive Line Average Voltage Circuit 1 Indicates the average input corrent at the AFD for Compressor 1A Amps Air 10143 Drive Line Average Line Current Circuit 1 Indicates the temperature of the transistor for the AFD for Compressor 1A Amps Air 10143 AFD Frequency Circuit 1 Indicates the temperature of the transistor for the AFD for Compressor 1A Persecond Air 10144 Drive Line Frequency Circuit 1 Indicates the temperature of the intracter base for the AFD for Compressor 1A Persecond Air 10149	AI-10134	Drive Motor Current W Compressor 1A	1A in terms of Amps	Amps
AI-1013b Drive Motor Voltage WU Crouit 1 for Compressor 1A Volts AI-10137 Drive Motor Voltage WU Crouit 1 Indicates the measurement of Voltage between Line 3 to 1 at the AFD Volts AI-10138 Drive Motor Voltage Voltage Circuit 1 Indicates the average voltage line to line at AFD for Compressor 1A Volts AI-10140 Drive Output Power Circuit 1 Indicates the average voltage line to line at AFD for Compressor 1A Kilowatts AI-10140 Drive Une Average Voltage Circuit 1 Indicates the average input voltage at the AFD for Compressor 1A Kilowatts AI-10141 Drive Line Average Voltage Circuit 1 Indicates the average input voltage at the AFD for Compressor 1A Kilowatts AI-10142 Drive Line Frequency Circuit 1 Indicates the average input voltage at the AFD for Compressor 1A Feel per second per second AI-10145 AFD Frequency Circuit 1 Indicates the temperature of the transistor for the AFD for Compressor 1A Feel per second	AI-10135	Drive Motor Voltage UV Circuit 1		Volts
AI-1013/ Unive Motor Voitage W0 Urbur 1 for Compressor 1A Voits AI-10138 Drive Motor Voitage W0 Lage Circuit 1 Indicates the voitage voitage inte to line at AFD for Compressor 1A Voits AI-10140 Drive DC Bus Voitage Circuit 1 Indicates the voitage of the DC Bus from the AFD for Compressor 1A Kilowatts AI-10141 Drive Input Power Circuit 1 Indicates the power input for the AFD for Compressor 1A Kilowatts AI-10142 Drive Line Average Voitage Circuit 1 Indicates the average input voitage at the AFD for Compressor 1A Kilowatts AI-10143 Drive Line Average Voitage Circuit 1 Indicates the taverage input voitage at the AFD for Compressor 1A Arb requency Circuit 1 Indicates the taverage input voitage at the AFD for Compressor 1A Fee pre-second per second for per second for per second for per second for the AFD for Compressor 1A Fee pre-second for per second for per second for per second for the AFD for Compressor 2A Degrees Fahrenheit Compressor 2A No Units AI-10146 AFD Fraguency Circuit 1 Indicates the tamperature of the inverter base for the AFD for Compressor 2A Degrees Fahrenheit Compressor 2A No Units AI-10149 Starts - Compressor 2A Indicates the tamperature of the inverter base for the AFD for Compressor 2A No Units	AI-10136	Drive Motor Voltage VW Circuit 1	for Compressor 1A	Volts
AI-10139 Drive DC Bus Voltage Circuit 1 Indicates the voltage of the DC Bus from the AFD for Compressor 1A Volts AI-10140 Drive Output Power Circuit 1 Indicates the power output from the AFD for Compressor 1A Kilowatts AI-10141 Drive Input Power Circuit 1 Indicates the power input for the AFD for Compressor 1A Kilowatts AI-10142 Drive Line Average Voltage Circuit 1 Indicates the average input voltage at the AFD for Compressor 1A Volts AI-10143 Drive Line Frequency Circuit 1 Indicates the estimated input frequency at the AFD for Compressor 1A Mots AI-10145 AFD Frequency Circuit 1 Indicates the temperature of the inverter base for the AFD for Compressor 1A Per second AI-10146 AFD Transistor Temperature Circuit 1 Indicates the temperature of the inverter base for the AFD for Compressor 1A Degrees Fahrenheit AI-10149 Drive Rectifier Base Temperature Circuit 1 Indicates the temperature of the rectifier base for the AFD for Compressor 2A No Units AI-10149 Starts - Compressor 2A Indicates the number of starts of Compressor 2A No Units AI-10150 Run Time - Compressor 2A Indicates the first temperature sensor of the windings on motor 2A Degrees Fahrenheit	AI-10137	Drive Motor Voltage WU Circuit 1		Volts
AT-10140 Drive Output Power Circuit 1 Indicates the power output from the AFD for Compressor 1A Kilowatts AT-10141 Drive Input Power Circuit 1 Indicates the power input for the AFD for Compressor 1A Kilowatts AT-10142 Drive Line Average Voltage Circuit 1 Indicates the average input voltage at the AFD for Compressor 1A Volts AT-10143 Drive Average Untage Circuit 1 Indicates the average input voltage at the AFD for Compressor 1A Amps AT-10143 Drive Line Frequency Circuit 1 Indicates the requency at the AFD for Compressor 1A Teget pre-second per second p	AI-10138	Drive Motor Average Voltage Circuit 1	Indicates the average voltage line to line at AFD for Compressor 1A	Volts
A1-10141 Drive Input Power Circuit 1 Indicates the power input for the AFD for Compressor 1A Kilowatts A1-10142 Drive Line Average Voltage Circuit 1 Indicates the average input voltage at the AFD for Compressor 1A Volts A1-10143 Drive Line Average Une Current Circuit 1 Indicates the average input current at the AFD for Compressor 1A Amps A1-10144 Drive Average Line Current Circuit 1 Indicates the estimated input frequency at the AFD for Compressor 1A feet per second A1-10145 AFD Frequency Circuit 1 Indicates the temperature of the transistor for the AFD for Degrees Fahrenheit A1-10146 AFD Transistor Temperature Circuit Indicates the temperature of the transistor for the AFD for Degrees Fahrenheit A1-10148 Drive Rectifier Base Temperature Circuit Indicates the temperature of the rectifier base for the AFD for Degrees Fahrenheit A1-10149 Starts - Compressor 2A Indicates the first temperature of the available speed being used by Compressor 2A No Units A1-10152 Motor Winding Temperature 2 Circuit 2 Indicates the measurement of func 1 current at AFD for Compressor Degrees Fahrenheit A1-10153 Drive Motor Current U RA Compressor Indicates the available speed being used by Compressor 2A Percent A1-10154	AI-10139	Drive DC Bus Voltage Circuit 1	Indicates the voltage of the DC Bus from the AFD for Compressor 1A	Volts
Al-10142 Drive Line Average Voltage Circuit 1 Indicates the average input voltage at the AFD for Compressor 1A Volts Al-10143 Drive Average Line Current Circuit 1 Indicates the average input voltage at the AFD for Compressor 1A Amps Al-10144 Drive Average Line Current Circuit 1 Indicates the estimated input frequency at the AFD for Compressor 1A feet per second per second Al-10146 AFD Frequency Circuit 1 Indicates the frequency at the stator for AFD for Compressor 1A feet per second per second Al-10146 AFD Transistor Temperature Circuit 1 Indicates the temperature of the invertor base for the AFD for Compressor 1A Degrees Fahrenheit Al-10148 Drive Rectifier Base Temperature Circuit 1 Indicates the temperature of the invertor base for the AFD for Compressor 2A Degrees Fahrenheit Al-10149 Starts - Compressor 2A Indicates the number of starts of Compressor 2A, in hours Hours Al-10150 Run Time - Compressor 2A Indicates the first temperaure sensor of the windings on motor 2A Degrees Fahrenheit Al-10151 Motor Winding Temperature 2 Circuit 2 Indicates the emasurement of Line 2 current at AFD for Compressor 2A Degrees Fahrenheit Al-10152 Drive Motor Current V RLA Compressor Indicates the eaviala	AI-10140	Drive Output Power Circuit 1	Indicates the power output from the AFD for Compressor 1A	Kilowatts
AI-10143 Drive Average Line Current Circuit 1 Indicates the average input current at the APD for Compressor 1A Amps AI-10143 Drive Line Frequency Circuit 1 Indicates the estimated input frequency at the AFD for Compressor 1A feet per second AI-10144 Drive Line Frequency Circuit 1 Indicates the frequency at the stator for APD for Compressor 1A feet per second AI-10145 AFD Frequency Circuit 1 Indicates the temperature of the inverter base for the AFD for Compressor 1A Degrees Fahrenheit AI-10144 Drive Inverter Base Temperature Circuit 1 Indicates the temperature of the inverter base for the AFD for Compressor 1A Degrees Fahrenheit AI-10149 Starts - Compressor 2A Indicates the temperature of the rectifier base for the AFD for Compressor 2A Degrees Fahrenheit AI-10150 Run Time - Compressor 2A Indicates the number of starts of Compressor 2A, in hours Hours AI-10151 Compressor 2A Speed Status Indicates the first temperature sensor of the windings on motor 2A Degrees Fahrenheit AI-10152 Motor Winding Temperature 2 Circuit 2 Indicates the measurement of Line 1 current at AFD for Compressor Percent AI-10153 Drive Motor Current V RLA Compressor Indicates the measurement of Line 2 current at AFD fo	AI-10141	Drive Input Power Circuit 1	Indicates the power input for the AFD for Compressor 1A	Kilowatts
AI-10144 Drive Line Frequency Circuit 1 Indicates the estimated input frequency at the AFD for Compressor 1A feet per second per second AI-10145 AFD Frequency Circuit 1 Indicates the frequency at the stator for AFD for Compressor 1A feet per second AI-10146 AFD Transitor Temperature Circuit 1 Indicates the temperature of the transistor for the AFD for Compressor 1A feet per second AI-10148 Drive Inverter Base Temperature Circuit 1 Indicates the temperature of the rectifier base for the AFD for Compressor 2A Degrees Fahrenheit AI-10148 Drive Rectifier Base Temperature Circuit 1 Indicates the temperature of the rectifier base for the AFD for Compressor 2A No Units AI-10150 Run Time - Compressor 2A Indicates the number of starts of Compressor 2A, in hours Hours AI-10151 Compressor 2A Speed Status Indicates the first temperature sensor of the windings on motor 2A Degrees Fahrenheit AI-10152 Motor Winding Temperature 2 Circuit 2 Indicates the measurement of Line 2 current at AFD for Compressor 2A Percent AI-10155 Drive Motor Current U RLA Compressor Indicates the easurement of Line 2 current at AFD for Compressor 2A Percent AI-10155 Drive Motor Current V RLA Compressor Indicates the easurement of Line 3 current at AFD for Compressor Percent <td>AI-10142</td> <td>Drive Line Average Voltage Circuit 1</td> <td>Indcates the average input voltage at the AFD for Compressor 1A</td> <td>Volts</td>	AI-10142	Drive Line Average Voltage Circuit 1	Indcates the average input voltage at the AFD for Compressor 1A	Volts
AI-10144 Drive Line Prequency Circuit 1 Indicates the estimated input frequency at the APD for Compressor 1A per second per second AI-10145 AFD Frequency Circuit 1 Indicates the frequency at the stator for AFD for Compressor 1A feet per second per second AI-10146 AFD Transistor Temperature Circuit 1 Indicates the temperature of the inverter base for the AFD for Compressor 1A Degrees Fahrenheit AI-10148 Drive Rectifier Base Temperature Circuit Indicates the temperature of the rectifier base for the AFD for Compressor 1A Degrees Fahrenheit AI-10149 Starts - Compressor 2A Indicates the number of starts of Compressor 2A, in hours Hours AI-10150 Run Time - Compressor 2A Indicates the first temperature sensor of the windings on motor 2A Degrees Fahrenheit AI-10151 Compressor 2A Speed Status Indicates the first temperature sensor of the windings on motor 2A Degrees Fahrenheit AI-10152 Motor Winding Temperature 1 Circuit 2 Indicates the first temperature sensor of the windings on motor 2A Degrees Fahrenheit AI-10153 Motor Winding Temperature 2 Circuit 2 Indicates the measurement of Line 1 Current at AFD for Compressor 2A in terms of % RLA Drive Motor Current V RLA Compressor 2A Indicates the average current at AFD for Compressor 2A in terms of % R	AI-10143	Drive Average Line Current Circuit 1	Indcates the average input current at the AFD for Compressor 1A	
AI-10145 AFD Frequency Orcount 1 Indicates the mequency at the station for long Decision IA per second AI-10146 AFD Transistor Temperature Circuit 1 Indicates the temperature of the transistor for the AFD for Compressor IA Degrees Fahrenheit AI-10147 Drive Inverter Base Temperature Circuit Indicates the temperature of the inverter base for the AFD for Compressor IA Degrees Fahrenheit AI-10148 Drive Rectifier Base Temperature Circuit Indicates the temperature of the rectifier base for the AFD for Compressor IA Degrees Fahrenheit AI-10149 Starts - Compressor 2A Indicates the number of starts of Compressor 2A No Units AI-10150 Run Time - Compressor 2A Indicates the first temperaure sensor of the windings on motor 2A Degrees Fahrenheit AI-10151 Motor Winding Temperature 1 Circuit 2 Indicates the first temperaure sensor of the windings on motor 2A Degrees Fahrenheit AI-10152 Motor Winding Temperature 2 Circuit 2 Indicates the measurement of Line 1 current at AFD for Compressor PA Degrees Fahrenheit AI-10155 Drive Motor Current V RLA Compressor Indicates the measurement of Line 2 current at AFD for Compressor Percent AI-10155 Drive Motor Current V RLA Compressor 2A Indicates the measurement of	AI-10144	Drive Line Frequency Circuit 1	Indicates the estimated input frequency at the AFD for Compressor 1A	per second
AI-10146 AP Difference of the imperature Circuit 1 Compressor 1A Compressor 1A Degrees Fahrenheit Compressor 1A AI-10147 Drive Inverter Base Temperature Circuit 1 Indicates the temperature of the invertifier base for the APD for Compressor 1A Degrees Fahrenheit Compressor 1A Degrees Fahrenheit Compressor 1A AI-10148 Drive Rectifier Base Temperature Circuit 1 Indicates the temperature of the invetifier base for the APD for Compressor 1A Degrees Fahrenheit Compressor 1A AI-10149 Starts - Compressor 2A Indicates the number of starts of Compressor 2A, in hours Hours AI-10150 Run Time - Compressor 2A Indicates the first temperature sensor of the windings on motor 2A Degrees Fahrenheit AI-10151 Compressor Current U RLA Compressor Indicates the first temperature sensor of the windings on motor 2A Degrees Fahrenheit AI-10153 Motor Winding Temperature 2 Circuit 2 Indicates the measurement of Line 1 current at AFD for Compressor 2A in terms of % RLA Degrees Fahrenheit AI-10155 Drive Motor Current V RLA Compressor 2A Indicates the measurement of Line 2 current at AFD for Compressor 2A in terms of % RLA Percent AI-10157 Drive Motor Current VRLA Indicates the measurement of Line 3 current at AFD for Compressor 2A in terms of Amps Percent AI-10158 Drive Motor Current	AI-10145	AFD Frequency Circuit 1	Indicates the frequency at the stator for AFD for Compressor 1A	
AI-10147 Instruction and the product of the transmission of transmis of transmission of transmission of transmis	AI-10146	AFD Transistor Temperature Circuit 1		Degrees Fahrenheit
Al-101401Compressor 1ADegreest of internationAI-10149Starts - Compressor 2AIndicates the number of starts of Compressor 2ANo UnitsAI-10150Run Time - Compressor 2AIndicates the run time of x000D_ Compressor 2A, in hoursHoursAI-10151Compressor 2A Speed StatusIndicates the work of the available speed being used by Compressor 2APercentAI-10152Motor Winding Temperature 1 Circuit 2Indicates the first temperaure sensor of the windings on motor 2ADegrees FahrenheidAI-10153Motor Winding Temperature 2 Circuit 2Indicates the second temperaure sensor of the windings on motor 2ADegrees FahrenheidAI-10154Drive Motor Current U RLA CompressorIndicates the measurement of Line 1 current at AFD for CompressorPercentAI-10155Drive Motor Current W RLA CompressorIndicates the measurement of Line 3 current at AFD for CompressorPercentAI-10155Drive Motor Current W RLA Compressor 2AIndicates the measurement of Line 3 current at AFD for CompressorPercentAI-10157Drive Motor Current RUAIndicates the measurement of Line 3 current at AFD for CompressorAmpsAI-10159Drive Motor Current V Compressor 2AIndicates the measurement of Line 1 current at AFD for CompressorAmpsAI-10159Drive Motor Current V Compressor 2AIndicates the measurement of Wine current at AFD for CompressorAmpsAI-10160Drive Motor Voltage UV Circuit 2Indicates the measurement of Wine current at AFD for CompressorAmpsAI-10161Drive Motor Voltage UV Circuit 2Indicates the mea	AI-10147		Inverter Base Temperature Circuit Indicates the temperature of the inverter base for the AFD for	
AI-10150Run Time - Compressor 2AIndicates the run time of_x000D_ Compressor 2A, in hoursHoursAI-10151Compressor 2A Speed StatusIndicates the % of the available speed being used by Compressor 2APercentAI-10152Motor Winding Temperature 1 Circuit 2Indicates the first temperaure sensor of the windings on motor 2ADegrees FahrenheidAI-10153Motor Winding Temperature 2 Circuit 2Indicates the second temperaure sensor of the windings on motor 2ADegrees FahrenheidAI-10154Drive Motor Current U RLA Compressor 2AIndicates the measurement of Line 1 current at AFD for Compressor 2A in terms of % RLAPercentAI-10155Drive Motor Current V RLA Compressor 2AIndicates the measurement of Line 2 current at AFD for Compressor 2A in terms of % RLAPercentAI-10156Drive Motor Current W RLA Compressor 2AIndicates the avarage current at AFD for Compressor 2A in terms of % RLAPercentAI-10157Drive Motor Current W RLA Compressor 2AIndicates the avarage current at AFD for Compressor 2A in terms of % RLAPercentAI-10158Drive Motor Current V Compressor 2AIndicates the measurement of Line 1 current at AFD for Compressor 2A in terms of AmpsAmpsAI-10159Drive Motor Current V Compressor 2AIndicates the measurement of Line 1 current at AFD for Compressor 2A in terms of AmpsAmpsAI-10160Drive Motor Current V Compressor 2AIndicates the measurement of Uine current at AFD for Compressor 2A in terms of AmpsAmpsAI-10161Drive Motor Current V Compressor 2AIndicates the measurement of Vilac current at A	AI-10148		ive Rectifier Base Temperature Circuit Indicates the temperature of the rectifier base for the AFD for	
AI-10151Compressor 2A Speed StatusIndicates the % of the available speed being used by Compressor 2APercentAI-10152Motor Winding Temperature 1 Circuit 2Indicates the first temperaure sensor of the windings on motor 2ADegrees FahrenheidAI-10153Motor Winding Temperature 2 Circuit 2Indicates the second temperaure sensor of the windings on motor 2ADegrees FahrenheidAI-10153Drive Motor Current U RLA Compressor 2AIndicates the measurement of Line 1 current at AFD for Compressor 2A in terms of % RLAPercentAI-10156Drive Motor Current V RLA Compressor 2AIndicates the measurement of Line 2 current at AFD for Compressor 2A in terms of % RLAPercentAI-10157Drive Motor Current W RLA Compressor 2AIndicates the measurement of Line 2 current at AFD for Compressor 2A in terms of % RLAPercentAI-10157Drive Motor Average Current RLA Compressor 2AIndicates the average current at AFD for Compressor 2A in terms of % RLAPercentAI-10159Drive Motor Current V Compressor 2AIndicates the measurement of Line 1 current at AFD for Compressor 2A in terms of AmpsAmpsAI-10160Drive Motor Current V Compressor 2AIndicates the measurement of Vine current at AFD for Compressor 2A in terms of AmpsAmpsAI-10161Drive Motor Current W Compressor 2AIndicates the measurement of Vine current at AFD for Compressor 2A in terms of AmpsAmpsAI-10160Drive Motor Voltage UV Circuit 2Indicates the measurement of Vine current at AFD for Compressor 2A in terms of AmpsAmpsAI-10161Drive Motor Voltage VW Circuit 2 <td>AI-10149</td> <td>Starts - Compressor 2A</td> <td colspan="2"></td>	AI-10149	Starts - Compressor 2A		
AI-10152Motor Winding Temperature 1 Circuit 2Indicates the first temperaure sensor of the windings on motor 2ADegrees FahrenheidAI-10153Motor Winding Temperature 2 Circuit 2Indicates the second temperaure sensor of the windings on motor 2ADegrees FahrenheidAI-10154Drive Motor Current U RLA CompressorIndicates the measurement of Line 1 current at AFD for CompressorPercentAI-10155Drive Motor Current V RLA CompressorIndicates the measurement of Line 2 current at AFD for CompressorPercentAI-10156Drive Motor Current W RLA CompressorIndicates the measurement of Line 3 current at AFD for CompressorPercentAI-10156Drive Motor Current W RLA CompressorIndicates the measurement of Line 3 current at AFD for CompressorPercentAI-10157Drive Motor Average Current RLA Compressor 2AIndicates the average current at AFD for CompressorPercentAI-10158Drive Motor Current U Compressor 2AIndicates the measurement of Uine 1 current at AFD for CompressorAmpsAI-10159Drive Motor Current V Compressor 2AIndicates the measurement of Vine current at AFD for CompressorAmpsAI-10160Drive Motor Current W Compressor 2AIndicates the measurement of Wine current at AFD for CompressorAmpsAI-10160Drive Motor Voltage UV Circuit 2Indicates the measurement of Wine current at AFD for CompressorAmpsAI-10161Drive Motor Voltage UV Circuit 2Indicates the measurement of Vingae between Line 1 to 2 at AFD for Compressor 2AVoltsAI-10161Drive Motor Voltage WU Circuit 2Indicates the measurement of	AI-10150	Run Time - Compressor 2A Indicates the run time of_x000D_Compressor 2A, in hours		Hours
AI-10153 Motor Winding Temperature 2 Circuit 2 Indicates the second temperature sensor of the windings on motor 2A Degrees Fahrenheid AI-10154 Drive Motor Current U RLA Compressor 2A Indicates the measurement of Line 1 current at AFD for Compressor 2A in terms of % RLA Percent AI-10155 Drive Motor Current V RLA Compressor 2A Indicates the measurement of Line 2 current at AFD for Compressor 2A in terms of % RLA Percent AI-10156 Drive Motor Current W RLA Compressor 2A Indicates the measurement of Line 3 current at AFD for Compressor 2A in terms of % RLA Percent AI-10157 Drive Motor Average Current RLA Compressor 2A Indicates the average current at AFD for Compressor 2A in terms of % RLA Percent AI-10158 Drive Motor Current U Compressor 2A Indicates the measurement of Line 1 current at AFD for Compressor 2A in terms of Amps Amps AI-10159 Drive Motor Current V Compressor 2A Indicates the measurement of Vine current at AFD for Compressor 2A in terms of Amps Amps AI-10160 Drive Motor Voltage UV Circuit 2 Indicates the measurement of Vine current at AFD for Compressor 2A in terms of Amps Amps AI-10161 Drive Motor Voltage UV Circuit 2 Indicates the measurement of Vingae between Line 1 to 2 at AFD for Compressor 2A Volts AI-10162 Drive Motor Voltage UV Circuit 2	AI-10151	Compressor 2A Speed Status	Indicates the % of the available speed being used by Compressor 2A	Percent
AI-10154Drive Motor Current U RLA Compressor 2AIndicates the measurement of Line 1 current at AFD for Compressor 2A in terms of % RLAPercentAI-10155Drive Motor Current V RLA Compressor 2AIndicates the measurement of Line 2 current at AFD for Compressor 2A in terms of % RLAPercentAI-10156Drive Motor Current W RLA Compressor 2AIndicates the measurement of Line 3 current at AFD for Compressor 2A in terms of % RLAPercentAI-10156Drive Motor Current W RLA Compressor 2AIndicates the measurement of Line 3 current at AFD for Compressor 2A in terms of % RLAPercentAI-10157Drive Motor Current RLA Compressor 2AIndicates the average current at AFD for Compressor 2A in terms of % RLAPercentAI-10158Drive Motor Current U Compressor 2AIndicates the measurement of Line 1 current at AFD for Compressor 2A in terms of AmpsAmpsAI-10159Drive Motor Current V Compressor 2AIndicates the measurement of V line current at AFD for Compressor 2A in terms of AmpsAmpsAI-10160Drive Motor Current W Compressor 2AIndicates the measurement of V line current at AFD for Compressor 2A in terms of AmpsAmpsAI-10161Drive Motor Voltage UV Circuit 2Indicates the measurement of voltage between Line 1 to 2 at AFD for Compressor 2AVoltsAI-10162Drive Motor Voltage W Circuit 2Indicates the measurement of voltage between Line 3 to 1 at AFD for Compressor 2AVoltsAI-10163Drive Motor Voltage WU Circuit 2Indicates the average voltage line to line at AFD for Compressor 2AVoltsAI-10164Drive Motor Vol	AI-10152	Motor Winding Temperature 1 Circuit 2	Indicates the first temperaure sensor of the windings on motor 2A	Degrees Fahrenheit
Al-101342A2A in terms of % RLAPercentAI-10155Drive Motor Current V RLA Compressor 2AIndicates the measurement of Line 2 current at AFD for Compressor 2A in terms of % RLAPercentAI-10156Drive Motor Current W RLA Compressor 2AIndicates the measurement of Line 3 current at AFD for Compressor 2A in terms of % RLAPercentAI-10157Drive Motor Current U Compressor 2AIndicates the average current at AFD for Compressor 2A in terms of % RLAPercentAI-10157Drive Motor Current U Compressor 2AIndicates the average current at AFD for Compressor 2A in terms of M RLSPercentAI-10158Drive Motor Current U Compressor 2AIndicates the measurement of Uline 1 current at AFD for Compressor 2A in terms of AmpsAmpsAI-10159Drive Motor Current V Compressor 2AIndicates the measurement of V line current at AFD for Compressor 2A in terms of AmpsAmpsAI-10160Drive Motor Current W Compressor 2AIndicates the measurement of V line current at AFD for Compressor 2A in terms of AmpsAmpsAI-10161Drive Motor Voltage UV Circuit 2Indicates the measurement of voltage between Line 1 to 2 at AFD for Compressor 2AVoltsAI-10162Drive Motor Average Voltage UV Circuit 2Indicates the measurement of voltage between Line 3 to 1 at AFD for Compressor 2AVoltsAI-10163Drive Motor Average Voltage Circuit 2Indicates the average voltage line to line at AFD for Compressor 2AVoltsAI-10163Drive Motor Average Voltage Circuit 2Indicates the average voltage line to line at AFD for Compressor 2AVoltsAI	AI-10153	Motor Winding Temperature 2 Circuit 2	Indicates the second temperaure sensor of the windings on motor 2A	Degrees Fahrenheit
AI-101332A2A in terms of % RLAPercentAI-10156Drive Motor Current W RLA Compressor 2AIndicates the measurement of Line 3 current at AFD for Compressor 2A in terms of % RLAPercentAI-10157Drive Motor Average Current RLA Compressor 2AIndicates the average current at AFD for Compressor 2A in terms of % RLAPercentAI-10158Drive Motor Current U Compressor 2AIndicates the average current at AFD for Compressor 2A in terms of AmpsAmpsAI-10159Drive Motor Current V Compressor 2AIndicates the measurement of V line current at AFD for Compressor 2A in terms of AmpsAmpsAI-10160Drive Motor Current W Compressor 2AIndicates the measurement of V line current at AFD for Compressor 2A in terms of AmpsAmpsAI-10161Drive Motor Current W Compressor 2AIndicates the measurement of V line current at AFD for Compressor 2A in terms of AmpsAmpsAI-10160Drive Motor Current W Compressor 2AIndicates the measurement of V line current at AFD for Compressor 2A in terms of AmpsAmpsAI-10161Drive Motor Voltage UV Circuit 2Indicates the measurement of voltage between Line 1 to 2 at AFD for Compressor 2AVoltsAI-10162Drive Motor Voltage WU Circuit 2Indicates the measurement of voltage between Line 3 to 1 at AFD for Compressor 2AVoltsAI-10163Drive Motor Average Voltage Circuit 2Indicates the average voltage line to line at AFD for Compressor 2AVoltsAI-10163Drive Motor Average Voltage Circuit 2Indicates the average voltage line to line at AFD for Compressor 2AVoltsAI-10164<	AI-10154		2A in terms of % RLA	Percent
AI-101562A2A2A in terms of % RLAPercentAI-10157Drive Motor Average Current RLA Compressor 2AIndicates the average current at AFD for Compressor 2A in terms of % RLAPercentAI-10158Drive Motor Current U Compressor 2AIndicates the average current at AFD for Compressor 2A in terms of AmpsAmpsAI-10159Drive Motor Current V Compressor 2AIndicates the measurement of V line current at AFD for Compressor 2A in terms of AmpsAmpsAI-10160Drive Motor Current W Compressor 2AIndicates the measurement of W line current at AFD for Compressor 2A in terms of AmpsAmpsAI-10161Drive Motor Voltage UV Circuit 2Indicates the measurement of voltage between Line 1 to 2 at AFD for Compressor 2AVoltsAI-10162Drive Motor Voltage UV Circuit 2Indicates the measurement of voltage between Line 2 to 3 at AFD for Compressor 2AVoltsAI-10163Drive Motor Voltage WU Circuit 2Indicates the measurement of voltage between Line 3 to 1 at AFD for Compressor 2AVoltsAI-10164Drive Motor Average Voltage Circuit 2Indicates the average voltage line to line at AFD for Compressor 2AVoltsAI-10165Drive DC Bus Voltage Circuit 2Indicates the overage voltage line to line at AFD for Compressor 2AVoltsAI-10165Drive DC Bus Voltage Circuit 2Indicates the power output from the AFD for Compressor 2AVoltsAI-10164Drive Dutput Power Circuit 2Indicates the power output from the AFD for Compressor 2AVoltsAI-10165Drive DU Bus Voltage Circuit 2Indicates the power output from the A	AI-10155	•		Percent
AI-10157Drive Motor Average Current RLA Compressor 2AIndicates the average current at AFD for Compressor 2A in terms of % RLAPercentAI-10158Drive Motor Current U Compressor 2AIndicates the average current at AFD for Compressor 2A in terms of AmpsAmpsAI-10159Drive Motor Current V Compressor 2AIndicates the measurement of V line current at AFD for Compressor 2A in terms of AmpsAmpsAI-10159Drive Motor Current W Compressor 2AIndicates the measurement of V line current at AFD for Compressor 2A in terms of AmpsAmpsAI-10160Drive Motor Current W Compressor 2AIndicates the measurement of V line current at AFD for Compressor 2A in terms of AmpsAmpsAI-10161Drive Motor Voltage UV Circuit 2Indicates the measurement of voltage between Line 1 to 2 at AFD for Compressor 2AVoltsAI-10162Drive Motor Voltage VW Circuit 2Indicates the measurement of voltage between Line 2 to 3 at AFD for Compressor 2AVoltsAI-10163Drive Motor Voltage WU Circuit 2Indicates the average voltage between Line 3 to 1 at AFD for Compressor 2AVoltsAI-10164Drive Motor Average Voltage Circuit 2Indicates the average voltage line to line at AFD for Compressor 2AVoltsAI-10165Drive DC Bus Voltage Circuit 2Indicates the average voltage of the DC Bus from the AFD for Compressor 2AVoltsAI-10166Drive Output Power Circuit 2Indicates the power output from the AFD for Compressor 2AVoltsAI-10166Drive Input Power Circuit 2Indicates the power input for the AFD for Compressor 2AKilowatts <td>AI-10156</td> <td>•</td> <td></td> <td>Percent</td>	AI-10156	•		Percent
AI-10158Drive Motor Current U Compressor 2AIndicates the measurement of Line 1 current at AFD for Compressor 2A in terms of AmpsAmpsAI-10159Drive Motor Current V Compressor 2AIndicates the measurement of V line current at AFD for Compressor 2A in terms of AmpsAmpsAI-10160Drive Motor Current W Compressor 2AIndicates the measurement of W line current at AFD for Compressor 2A in terms of AmpsAmpsAI-10161Drive Motor Current W Compressor 2AIndicates the measurement of Voltage between Line 1 to 2 at AFD for Compressor 2AVoltsAI-10162Drive Motor Voltage UV Circuit 2Indicates the measurement of voltage between Line 2 to 3 at AFD for Compressor 2AVoltsAI-10162Drive Motor Voltage VW Circuit 2Indicates the measurement of voltage between Line 3 to 1 at AFD for Compressor 2AVoltsAI-10163Drive Motor Average Voltage Circuit 2Indicates the average voltage line to line at AFD for Compressor 2AVoltsAI-10164Drive Motor Average Voltage Circuit 2Indicates the average voltage line to line at AFD for Compressor 2AVoltsAI-10165Drive DC Bus Voltage Circuit 2Indicates the overage voltage line to line at AFD for Compressor 2AVoltsAI-10166Drive Output Power Circuit 2Indicates the power output from the AFD for Compressor 2AVoltsAI-10167Drive Input Power Circuit 2Indicates the power input for the AFD for Compressor 2AKilowatts	AI-10157	Drive Motor Average Current RLA	Indicates the average current at AFD for Compressor 2A in terms of $\%$	Percent
AI-10159Drive Motor Current V Compressor 2A2A in terms of AmpsAmpsAI-10160Drive Motor Current W Compressor 2AIndicates the measurement of W line current at AFD for Compressor 2A in terms of AmpsAmpsAI-10161Drive Motor Voltage UV Circuit 2Indicates the measurement of voltage between Line 1 to 2 at AFD for Compressor 2AVoltsAI-10162Drive Motor Voltage VW Circuit 2Indicates the measurement of voltage between Line 2 to 3 at AFD for Compressor 2AVoltsAI-10163Drive Motor Voltage WU Circuit 2Indicates the measurement of voltage between Line 3 to 1 at AFD for Compressor 2AVoltsAI-10164Drive Motor Average Voltage Circuit 2Indicates the average voltage line to line at AFD for Compressor 2AVoltsAI-10165Drive DC Bus Voltage Circuit 2Indicates the voltage of the DC Bus from the AFD for Compressor 2AVoltsAI-10166Drive Output Power Circuit 2Indicates the power output from the AFD for Compressor 2AVoltsAI-10167Drive Input Power Circuit 2Indicates the power input for the AFD for Compressor 2AKilowatts	AI-10158	•	Indicates the measurement of Line 1 current at AFD for Compressor	Amps
AI-10160Drive Motor Current w Compressor 2A2A in terms of AmpsAmpsAI-10161Drive Motor Voltage UV Circuit 2Indicates the measurement of voltage between Line 1 to 2 at AFD for Compressor 2AVoltsAI-10162Drive Motor Voltage VW Circuit 2Indicates the measurement of voltage between Line 2 to 3 at AFD for Compressor 2AVoltsAI-10163Drive Motor Voltage WU Circuit 2Indicates the measurement of voltage between Line 3 to 1 at AFD for Compressor 2AVoltsAI-10164Drive Motor Average Voltage Circuit 2Indicates the average voltage line to line at AFD for Compressor 2AVoltsAI-10165Drive DC Bus Voltage Circuit 2Indicates the voltage of the DC Bus from the AFD for Compressor 2AVoltsAI-10166Drive Output Power Circuit 2Indicates the power output from the AFD for Compressor 2AVoltsAI-10167Drive Input Power Circuit 2Indicates the power input for the AFD for Compressor 2AKilowatts	AI-10159	Drive Motor Current V Compressor 2A		Amps
AI-10161 Drive Motor Voltage UV Circuit 2 Compressor 2A Volts AI-10162 Drive Motor Voltage VW Circuit 2 Indicates the measurement of voltage between Line 2 to 3 at AFD for Compressor 2A Volts AI-10163 Drive Motor Voltage WU Circuit 2 Indicates the measurement of voltage between Line 3 to 1 at AFD for Compressor 2A Volts AI-10164 Drive Motor Average Voltage Circuit 2 Indicates the average voltage line to line at AFD for Compressor 2A Volts AI-10165 Drive DC Bus Voltage Circuit 2 Indicates the voltage of the DC Bus from the AFD for Compressor 2A Volts AI-10166 Drive Output Power Circuit 2 Indicates the power output from the AFD for Compressor 2A Volts AI-10167 Drive Input Power Circuit 2 Indicates the power input for the AFD for Compressor 2A Kilowatts	AI-10160	Drive Motor Current W Compressor 2A	ompressor 24 Indicates the measurement of W line current at AFD for Compressor	
AI-10162 Drive Motor Voltage VW Circuit 2 Compressor 2A Volts AI-10163 Drive Motor Voltage WU Circuit 2 Indicates the measurement of voltage between Line 3 to 1 at AFD for Compressor 2A Volts AI-10164 Drive Motor Average Voltage Circuit 2 Indicates the average voltage line to line at AFD for Compressor 2A Volts AI-10165 Drive DC Bus Voltage Circuit 2 Indicates the voltage of the DC Bus from the AFD for Compressor 2A Volts AI-10166 Drive Output Power Circuit 2 Indicates the power output from the AFD for Compressor 2A Kilowatts AI-10167 Drive Input Power Circuit 2 Indicates the power input for the AFD for Compressor 2A Kilowatts	AI-10161	Drive Motor Voltage UV Circuit 2	Indicates the measurement of voltage between Line 1 to 2 at AFD for	Volts
AI-10163 Drive Motor Voitage W0 Circuit 2 Compressor 2A Voits AI-10164 Drive Motor Average Voltage Circuit 2 Indicates the average voltage line to line at AFD for Compressor 2A Volts AI-10165 Drive DC Bus Voltage Circuit 2 Indicates the voltage of the DC Bus from the AFD for Compressor 2A Volts AI-10166 Drive Output Power Circuit 2 Indicates the power output from the AFD for Compressor 2A Volts AI-10167 Drive Input Power Circuit 2 Indicates the power input for the AFD for Compressor 2A Kilowatts	AI-10162	Drive Motor Voltage VW Circuit 2		Volts
AI-10165 Drive DC Bus Voltage Circuit 2 Indicates the voltage of the DC Bus from the AFD for Compressor 2A Volts AI-10166 Drive Output Power Circuit 2 Indicates the power output from the AFD for Compressor 2A Kilowatts AI-10167 Drive Input Power Circuit 2 Indicates the power input for the AFD for Compressor 2A Kilowatts	AI-10163	Drive Motor Voltage WU Circuit 2		Volts
AI-10166 Drive Output Power Circuit 2 Indicates the power output from the AFD for Compressor 2A Kilowatts AI-10167 Drive Input Power Circuit 2 Indicates the power input for the AFD for Compressor 2A Kilowatts	AI-10164	Drive Motor Average Voltage Circuit 2	Indicates the average voltage line to line at AFD for Compressor 2A	Volts
AI-10167 Drive Input Power Circuit 2 Indicates the power input for the AFD for Compressor 2A Kilowatts	AI-10165	Drive DC Bus Voltage Circuit 2	Indicates the voltage of the DC Bus from the AFD for Compressor 2A	Volts
	AI-10166	Drive Output Power Circuit 2	Indicates the power output from the AFD for Compressor 2A	Kilowatts
AI-10168 Drive Line Average Voltage Circuit 2 Indicates the average input voltage at the AFD for Compressor 2A Volts	AI-10167	Drive Input Power Circuit 2	Indicates the power input for the AFD for Compressor 2A	Kilowatts
	AI-10168	Drive Line Average Voltage Circuit 2	ive Line Average Voltage Circuit 2 Indicates the average input voltage at the AFD for Compressor 2A	

Table 1. ACRB 150–300 tons analog inputs (continued)

Table 1. ACRB 150–300 tons analog inputs (continued)

Object Identifier	Object Name	Description	Units
AI-10169	Drive Average Line Current Circuit 2	e Current Circuit 2 Indicates the average input current at the AFD for Compressor 2A	
AI-10170	Drive Line Frequency Circuit 2	Indicates the estimated input frequency at the AFD for Compressor 2A	per second
AI-10171	AFD Frequency Circuit 2	Indicates the frequency at the stator for AFD for Compressor 2A	feet per second per second
AI-10172	AFD Transistor Temperature Circuit 2	Indicates the temperature of the transidtor for the AFD for Compressor 2A	Degrees Fahrenheit
AI-10173	Drive Inverter Base Temperature Circuit 2	Indicates the temperature of the inverter base for the AFD for Compressor 2A	Degrees Fahrenheit
AI-10174	Drive Rectifier Base Temperature Circuit 2	Indicates the temperature of the rectifier base for the AFD for Compressor 2A	Degrees Fahrenheit
AI-10175	Number Of Circuits	Number Of Circuits Indicates the number of refrigeration circuits in the chiller No	
AI-10176	Number Of Compressors Circuit 1	rs Circuit 1 Indicates the number of compressors on circuit 1 of the chiller	
AI-10177	Number Of Compressors Circuit 2	2 Indicates the number of compressors on circuit 2 of the chiller	
AI-10178	Free Cooling Capacity	ee Cooling Capacity Indicates the % capacity of the free cooling being used	
AI-10179	Free Cooling Entering Water Temperature	Indiactes the entering water temperature of the free cooling circuit	Degrees Fahrenheit
AI-10180	Energy Consumption Lifetime	Indicates the total energy consumption of the chiller (for the lifetime of the chiller)	Kilowatts hour
AI-10181	Energy Consumption	Indicates the total energy consumption of the chiller (since last accumulation reset)	Kilowatts hour
AI-10182	Unit Source ID	Indicates the last diagnostic of the chiller Separately, individual diagnostics are reported with dedicated points, variables, registers	No Units
AI-10183	Chiller Design Capacity	Indicates the design capacity of chilller	Tons of Refrigeration
AI-10184	Active Cool/Heat Setpoint Temperature	Indicates the value of the active Chilled Water Setpoint actively being used by the chiller	Degrees Fahrenheit
AI-10185	Actual Running Capacity	Indicates the measurement of the power being consumed by the Chiller	Percent

Table 2. ACRB 150–300 tons analog values

Object Identifier	Object Name	oject Name Description	
AV-10100	BAS Chilled Water Setpoint. The value is normally provided by the BAS to send the Chilled Water Setpoint. The value is subject to arbitration logic in the controller, in which case it may or may not be used for control purposes		Degrees Fahrenheit
AV-10101	BAS Demand Limit Setpoint	The value is normally provided by the BAS to send the Demand Limit Setpoint. The value is subject to arbitration logic in the controller, in which case it may or may not be used for control purposes	Percent

Table 3. ACRB 150–300 tons binary inputs

Object Identifier	Object Name	Description	Object States
BI-10100	Run Enable	Run Enable Indicates that chiller is available to run or is currently running	
BI-10101	Local Setpoint Control	Indicates the which setpoint is used for control purposes, Remote (BAS) or Local	0 = Remote control 1 = Local control
BI-10102	Limit Mode Relay Status	Indicates the status of the chiller limit relay	0 = Off 1 = On
BI-10103	Chiller Running State	Indicates whether the chiller is on (currently doing either cooling) or is considered off(not currently doing cooling)	
BI-10104	Maximum Capacity	Indicates the status of the maximum capacity relay	0 = Off 1 = On
BI-10105	Evaporator Water Pump Command	Indicates a request from the chiller to turn on the Evaporator Water Pump	0 = Off 1 = On
BI-10106	Evaporator Water Flow Status	Indicates the flow of water through evaporator	0 = No Flow 1 = Flow
BI-10107	Manual Override Exists	Indicated a manual override is present	0 = Off 1 = On

Object Identifier	Object Name	Description	Object States
BI-10108	Emergency Stop	Indicates the status of the emergency stop function of the chiller	0 = Auto 1 = Emergency Stop - Manual Reset Required
BI-10109	Diagnostic Present	Indicates whether diagnostic present	0 = Normal 1 = In Alarm
BI-10110	Diagnostic Shutdown Present	Indicates chiller is shut down due to diagnostics	0 = Normal 1 = In Alarm
BI-10111	Diagnostic: Manual Reset Required	Indicates when a diagnostic exists that requires manual reset	0 = Normal 1 = In Alarm
BI-10112	Diagnostic: Local Manual Reset Required	Indicates when a diagnostic exists that requires manual reset [Local only]	0 = Normal 1 = In Alarm
BI-10113	Diagnostic Present: Information	Indicates whether diagnostic present with Information Category	0 = Normal 1 = In Alarm
BI-10114	Diagnostic Present: Advisory	Indicates whether diagnostic present with Warning Category	0 = Normal 1 = In Alarm
BI-10115	Diagnostic Present: Critical	Indicates whether diagnostic present with Critical Category	0 = Normal 1 = In Alarm
BI-10116	Diagnostic Present: Service Required	Indicates whether diagnostic present with Service Required Category	0 = Normal 1 = In Alarm
BI-10117	Compressor 1A Running Status	Indicates running state fo Compressor 1A	0 = Off 1 = Running
BI-10118	Compressor 2A Running Status	Indicates running state fo Compressor 2A	0 = Off 1 = Running
BI-10119	Free Cooling Active	Indicated the free cooling mode is active	0 = Inactive 1 = Active
BI-10120	External Auto Stop Status	Indicates the status of the externally-wired auto/stop input	0 = Stop 1 = Auto
BI-10121	Front Panel Auto Stop Status	Indicates the auto/stop status of the Front Panel	0 = Stop 1 = Auto
BI-10122	Noise Reduction Request Active	Indicates wherther Noise Reduction active	0 = Off 1 = On

Table 4. ACRB 150–300 tons binary values

Object Identifier	Object Name	t Name Description	
BV-10100	Reset Diagnostic	Reset Diagnostic Normally used by the BMS to initiate a request to reset any controller diagnostics	
BV-10101	Noise Reduction Request BAS	Normally used by the BMS to command the chiller to enter a mode of operation where the noise of the unit is reduced	0 = Normal 1 = Reduce Noise
BV-10102	Chiller Auto Stop Command BAS	Normally used by the BMS to command the chiller to start running if operating conditions are satisfied, or to stop the chiller from running.0 = S 1 = A	
BV-10103	Free Cooling Auto Stop Command BAS	Normally used the BMS to command the chiller to allow free cooling mode if conditions are satisfied, or to stop the free cooling mode from operating.	0 = Stop 1 = Auto
BV-10104	Free Cooling Compressor Lockout Normally used by the BMS to lockout the Compressor while in free cooling mode		0 = Normal 1 = Locked Out
BV-10105	Circuit 1 Lockout BAS	Normally used by the BMS to lockout the Circuit-1 Compressor	0 = Normal 1 = Locked Out
BV-10106	Circuit 2 Lockout BAS	Normally used by the BMS to lockout the Circuit-2 Compressor	0 = Normal 1 = Locked Out
BV-10107	Energy Consumption Reset	Normally used by the BMS to reset the energy consumption accumulated total	0 = Accumulating 1 = Reset

Table 5.	ACRB 150–300 tons multi-state inputs
----------	--------------------------------------

Object Identifier	Object Name	Description	Object States
MI-10100	Running Mode	Indicates the running state of the chiller	1 = Chiller Off 2 = Chiller In Start Mode 3= Chiller In Run Mode 4= Chiller In Pre-Shutdown Mode 5 = Chiller In Service Mode
MI-10101	Operating Mode	Indicates the operating mode of the chiller	1 = Cool 2 = Heat 3= Ice Making 4= Free Cooling

Table 5	ACRB 150-300 tons multi-state inputs (continued)
	Aond 150 500 tons main state inputs (continueu/

MI-10102	Refrigerant Type	Indicates the chiller refrigerant type	1 = R-11 2 = R-12 3 = R-22 4 = R-123 5 = R-134a 6 = R-407C 7 = R-410A 8 = R-113 9 = R-114 10 = R-500 11 = R-500 12 = R-404A 13 = R-513A 14 = R-1233zd(E) 15 = R-514A 16 = R-1234ze(E)
MI-10103	Cooling Type	Indicates the cooling Type of chiller	1 = Water Cooled 2 = Air Cooled
MI-10104	Manufacture Location	Indicates the location that the chiller was manufactured	1 = Field Applied $2 = La Crosse$ $3 = Pueblo$ $4 = Charmes$ $5 = Rushville$ $6 = Macon$ $7 = Waco$ $8 = Lexington$ $9 = Forsyth$ $10 = Clarksville$ $11 = Ft. Smith$ $12 = Penang$ $13 = Colchester$ $14 = Curitiba$ $15 = Taicang$ $16 = Taiwan$ $17 = Epinal$ $18 = Golbey$

			1 = CVHF
			2 = CVGF
			3= CVHS
			4= RTAE
			5 = RTAF
			6 = RTHA
			7 = RTHB
			8 = RTHC
			9 = RTHD
			10 = RTWE
			11 = CTVD
			12 = CVR
			13 = CVHH
			14 = CDHH
			15 = VMAX
			16 = GVAF
	Model Information [GEN2]		17 = RTWF
NT 10105			18 = RTHF
MI-10105		Indicates the model information of chiller	19 = RTAC
			20 = CVHM
			21 = RTAG
			22 = CGAF
			23 = RTXG
			24 = GVWF
			25 = HDWA
			26 = CMAC
			27 = IPAK
			28 = CXAF
			29 = ACSA
			30 = RTSF
			31 = HSWA
			32 = ACRA
			33 = RTEG
			34 = ACXA
			35 = CMAF
			36 = ACRB Large
			37 = ACRB Small
	Chiller Cabraint Carrier	Indicates the selected setpoint source for control	1 = BAS
MI-10106	Chiller Setpoint Source	purpose	2 = External
			3 = Front Panel

Table 5. ACRB 150-300 tons multi-state inputs (continued)

Table 6. ACRB 150–300 tons multi-state values

Object Identifier	Object Name	Description	Object States
MV-10100	BAS Chiller Mode Command	Normally used by the BMS to command the chiller Mode	1 = Cool 2 = Heat 3= Ice Making 4= Free Cooling

ACRB 350–500 Tons Data Points

Table 7. ACRB 350–500 tons analog inputs

Object Identifier	Object Name	Description	Units
AI-10100	Active Chilled Water Setpoint	Indicates the value of the active Chilled Water Setpoint actively being used by the chiller	Degrees Fahrenheit
AI-10101	Active Demand Limit Setpoint	Indicates the demand limit setpoint value actively being used by the chiller	Percent
AI-10101	Active Demand Limit Setpoint	Indicates the demand limit setpoint value actively being used by the chiller	Percent
AI-10103	Evaporator Entering Water Temperature	Indicates the current temperature of the water entering the evaporator	Degrees Fahrenheit
AI-10104	Evaporator Leaving Water Temperature	Indicates the current temperature of the water leaving the evaporator	Degrees Fahrenheit
AI-10106	Unit Power Consumption	Indicates the measurement of the power being consumed by the Chiller	Kilowatts
AI-10107	Outdoor Air Temperature	Indicates the current temperature of the outdoor air	Degrees Fahrenheit
AI-10110	Evaporator Refrigerant Pressure Circuit 1	Indicates the current pressure of the refrigerant in the evaporator on circuit 1	Pound Force per Square Inch

Table 7. ACRB 350–500 tons analog inputs (continued)

Object Identifier	Object Name	Description	Units
AI-10111	Condenser Refrigerant Pressure Circuit 1	Indicates the current pressure of the refrigerant in the condenser on circuit 1	Pound Force per Square Inch
AI-10112	Differential Refrigerant Pressure Circuit 1	Indicates the pressure difference between the suction and discharge lines on circuit 1	Pound Force per Square Inch
AI-10113	Evaporator Saturated Refrigerant Temperature Circuit 1	Indicates the saturated_x000D_ refrigerant temperature of the evaporator on circuit 1	Degrees Fahrenheit
AI-10114	Condenser Saturated Refrigerant Temperature Circuit 1	Indicates the saturated_x000D_ refrigerant temperature of the condenser on circuit 1	Degrees Fahrenheit
AI-10115	Evaporator Refrigerant Pressure Circuit 2	Indicates the current pressure of the refrigerant in the evaporator on circuit 2	Pound Force per Square Inch
AI-10116	Condenser Refrigerant Pressure Circuit 2	Indicates the current pressure of the refrigerant in the condenser on circuit 2	Pound Force per Square Inch
AI-10117	Differential Refrigerant Pressure Circuit 2	Indicates the pressure difference between the suction and discharge lines on circuit 2	Pound Force per Square Inch
AI-10118	Evaporator Saturated Refrigerant Temperature Circuit 2	Indicates the saturated_x000D_ refrigerant temperature of the evaporator on circuit 2	Degrees Fahrenheit
AI-10119	Condenser Saturated Refrigerant Temperature Circuit 2	Indicates the saturated_x000D_ refrigerant temperature of the condenser on circuit 2	Degrees Fahrenheit
AI-10120	Refrigerant Discharge Temperature - Compressor 1A	Indicates the current temperature of the refrigerant being discharged from Compressor 1A	Degrees Fahrenheit
AI-10121	High Side Oil Pressure - Compressor 1A	Indicates the pressure of the oil on the high pressure side of Compressor 1A	Pound Force per Square Inch
AI-10122	Refrigerant Discharge Temperature - Compressor 2A	Indicates the current temperature of the refrigerant being discharged from Compressor 2A	Degrees Fahrenheit
AI-10123	High Side Oil Pressure - Compressor 2A	Indicates the pressure of the oil on the high pressure side of Compressor 2A	Pound Force per Square Inch
AI-10124	Air Flow Percentage Circuit 1	Indicates the approximate air flow percentage of Circuit 1	Percent
AI-10125	Air Flow Percentage Circuit 2	Indicates the approximate air flow percentage of Circuit 2	Percent
AI-10126	Drive Motor Average Voltage Circuit 1	Indicates the average voltage line to line at AFD for Compressor 1A	Volts
AI-10127	Drive Motor Current U Circuit 1	Indicates the measurement of Line 1 current at AFD for Compressor 1A in terms of Amps	Amps
AI-10128	Drive Motor Current V Circuit 1	Indicates the measurement of Line 2 current at AFD for Compressor 1A in terms of Amps	Amps
AI-10129	Drive Motor Current W Circuit 1	Indicates the measurement of Line 3 current at AFD for Compressor 1A in terms of Amps	Amps
AI-10130	Drive Motor Current U RLA Circuit 1	Indicates the measurement of Line 1 current at AFD for Compressor 1A in terms of % RLA	Percent
AI-10131	Drive Motor Current V RLA Circuit 1	Indicates the measurement of Line 2 current at AFD for Compressor 1A in terms of % RLA	Percent
AI-10132	Drive Motor Current W RLA Circuit 1	Indicates the measurement of Line 3 current at AFD for Compressor 1A in terms of % RLA	Percent
AI-10133	Drive Motor Average Current RLA Circuit 1	Indicates the average current at AFD for Compressor 1A in terms of % RLA	Percent
AI-10134	Drive DC Bus Voltage Circuit 1	Indicates the voltage of the DC Bus from the AFD for Compressor 1A	Volts
AI-10135	Drive Output Power Circuit 1	Indicates the power output from the AFD for Compressor 1A	Kilowatts
AI-10136	AFD Transistor Temperature Circuit 1	Indicates the temperature of the transistor for the AFD for Compressor 1A	Degrees Fahrenheit
AI-10137	Motor Winding Temperature 1 Circuit 1	Indicates the first temperaure sensor of the windings on motor 1A	Degrees Fahrenheit
AI-10138	Motor Winding Temperature 2 Circuit 1	Indicates the second temperaure sensor of the windings on motor $1\ensuremath{A}$	Degrees Fahrenheit
AI-10139	Drive Motor Average Voltage Circuit 2	Indicates the average voltage line to line at AFD for Compressor 2A	Volts
AI-10140	Drive Motor Current U Circuit 2	Indicates the measurement of Line 1 current at AFD for Compressor 2A in terms of Amps	Amps
AI-10141	Drive Motor Current V Circuit 2	Indicates the measurement of V line current at AFD for Compressor 2A in terms of Amps	Amps
AI-10142	Drive Motor Current W Circuit 2	Indicates the measurement of W line current at AFD for Compressor 2A in terms of Amps	Amps
AI-10143	Drive Motor Current U RLA Circuit 2	Indicates the measurement of Line 1 current at AFD for Compressor 2A in terms of % RLA	Percent
AI-10144	Drive Motor Current V RLA Circuit 2	Indicates the measurement of Line 2 current at AFD for Compressor 2A in terms of % RLA Indicates the measurement of Line 3 current at AFD for Compressor	Percent
AI-10145	Drive Motor Current W RLA Circuit 2	2A in terms of % PLA	Percent
AI-10146	Drive Motor Average Current RLA Circuit 2	Indicates the average current at AFD for Compressor 2A in terms of % RLA	Percent
AI-10147	Drive DC Bus Voltage Circuit 2	Indicates the voltage of the DC Bus from the AFD for Compressor 2A	Volts
AI-10148	Drive Output Power Circuit 2	Indicates the power output from the AFD for Compressor 2A	Kilowatts
AI-10149	AFD Transistor Temperature Circuit 2	Indicates the temperature of the transidtor for the AFD for Compressor 2A	Degrees Fahrenheit

Object Identifier	Object Name	Description	Units
AI-10150	Motor Winding Temperature 1 Circuit 2	Indicates the first temperaure sensor of the windings on motor 2A	Degrees Fahrenheit
AI-10151	Motor Winding Temperature 2 Circuit 2	Indicates the second temperaure sensor of the windings on motor 2A	Degrees Fahrenheit
AI-10152	Sub Cooled Liquid Temperature Circuit 1	Indicates the sub cooled liquid temperature of circuit 1	Degrees Fahrenheit
AI-10153	Sub Cooled Liquid Temperature Circuit 2	Indicates the sub cooled liquid temperature of circuit 2	Degrees Fahrenheit
AI-10154	Evaporator Differential Water Pressure	Indicates the differential water pressure of the evaporator	Pound Force per Square Inch
AI-10155	System Chilled Water Differential Pressure	Indicates the differential water pressure of the chilled water system	Pound Force per Square Inch
AI-10158	Phase AB Voltage - Compressor 1B	Indicates the measurement of voltage in Phase AB for Compressor 1B	Volts
AI-10159	Line 1 Current - Compressor 1B	Indicates the measurement of Line 1 current for Compressor 1B in terms of Amps	Amps
AI-10160	Line 2 Current - Compressor 1B	Indicates the measurement of Line 2 current for Compressor 1B in terms of Amps	Amps
AI-10161	Line 3 Current - Compressor 1B	Indicates the measurement of Line 3 current for Compressor 1B in terms of Amps	Amps
AI-10162	Line 1 Current RLA - Compressor 1B	Indicates the measurement of Line 1 current for Compressor 1B in terms of % RLA	Percent
AI-10163	Line 2 Current RLA - Compressor 1B	Indicates the measurement of Line 2 current for Compressor 1B in terms of % RLA	Percent
AI-10164	Line 3 Current RLA - Compressor 1B	Indicates the measurement of Line 3 current for Compressor 1B in terms of % RLA	Percent
AI-10165	Phase AB Voltage - Compressor 2B	Indicates the measurement of voltage in Phase AB for Compressor 2B	Volts
AI-10166	Line 1 Current - Compressor 2B	Indicates the measurement of Line 1 current for Compressor 2B in terms of Amps	Amps
AI-10167	Line 2 Current - Compressor 2B	Indicates the measurement of Line 2 current for Compressor 2B in terms of Amps	Amps
AI-10168	Line 3 Current - Compressor 2B	Indicates the measurement of Line 3 current for Compressor 2B in terms of Amps	Amps
AI-10169	Line 1 Current RLA - Compressor 2B	Indicates the measurement of Line 1 current for Compressor 2B in terms of % RLA	Percent
AI-10170	Line 2 Current RLA - Compressor 2B	Indicates the measurement of Line 2 current for Compressor 2B in terms of % RLA	Percent
AI-10171	Line 3 Current RLA - Compressor 2B	Indicates the measurement of Line 3 current for Compressor 2B in terms of % RLA	Percent
AI-10173	Refrigerant Discharge Temperature - Compressor 1B	Indicates the current temperature of the refrigerant being discharged from Compressor 1B	Degrees Fahrenheit
AI-10174	High Side Oil Pressure - Compressor 1B	Indicates the pressure of the oil on the high pressure side of Compressor 1B	Pound Force per Square Inch
AI-10175	Refrigerant Discharge Temperature - Compressor 2B	Indicates the current temperature of the refrigerant being discharged from Compressor 2B	Degrees Fahrenheit
AI-10176	High Side Oil Pressure - Compressor 2B	Indicates the pressure of the oil on the high pressure side of Compressor 2B	Pound Force per Square Inch
AI-10177	Number of Circuits	Indicates the number of refrigeration circuits in the chiller	No Units
AI-10178	Number of Compressors Circuit 1	Indicates the number of compressors on circuit 1 of the chiller	No Units
AI-10179	Number of Compressors Circuit 2	Indicates the number of compressors on circuit 2 of the chiller	No Units
AI-10180	Actual Running Capacity	Indicates the measurement of the power being consumed by the Chiller	Percent
AI-10181	Free Cooling Capacity Status	Indicates the % capacity of the free cooling being used	Percent
AI-10182	Free Cooling Entering Water Temperature Active	Indicates the entering water temperature of the free cooling circuit	Degrees Fahrenheit
AI-10185	Active Evaporator Differential Water Pressure Setpoint Status	Indicates the setpoint status of the evaporator differential water pressure	Pound Force per Square Inch
AI-10186	Energy Consumption Lifetime	Indicates the total energy consumption of the chiller (for the lifetime of the chiller)	Kilowatts hour
AI-10187	Energy Consumption	Indicates the total energy consumption of the chiller (since last accumulation reset)	Kilowatts hour
AI-10188	Starts - Compressor 1A	Indicates the number of starts of Compressor 1A	No Units
AI-10189	Run Time - Compressor 1A	Indicates the run time of Compressor 1A	No Units
AI-10190	Starts - Compressor 2A	Indicates the number of starts of Compressor 2A	No Units
AI-10191	Run Time - Compressor 2A	Indicates the run time of Compressor 2A	No Units
AI-10192	Starts - Compressor 1B	Indicates the number of starts of Compressor 1B	No Units
AI-10193	Run Time - Compressor 1B	Indicates the run time of Compressor 1B	No Units
AI-10194	Starts - Compressor 2B	Indicates the number of starts of Compressor 2B	No Units

Table 7. ACRB 350–500 tons analog inputs (continued)

Table 7. ACRB 350–500 tons analog inputs (continued)

Object Identifier	Object Name	Description	Units
AI-10195	Run Time - Compressor 2B	Indicates the run time of Compressor 2B	No Units
AI-10196	Chiller Design Capacity	Indicates the design capacity of chilller	Tons of Refrigeration
AI-10198	Chilled Water Setpoint Status	Indicates the chilled water setpoint temperature	Degrees Fahrenheit
AI-10199	Demand Limit Setpoint Status	Indacates the % capacity of the demand limit being used	Percent
AI-10200	Unit Source ID	Indicates the last diagnostic of the chiller Separately, individual diagnostics are reported with dedicated points, variables, registers	No Units
AI-10201	Drive Input Voltage Calculated 1A	Indicates the input voltage at the AFD for Compressor 1A	Volts
AI-10202	Drive Input Voltage Calculated 2A	Indicates the input voltage at the AFD for Compressor 2A	Volts
AI-10203	Active Cool/Heat Setpoint Temperature	Indicates the value of the active Chilled Water Setpoint actively being used by the chiller	Degrees Fahrenheit
AI-10204	Phase BC Voltage - Compressor 1B	Indicates the measurement of voltage in Phase BC for Compressor 1B	Volts
AI-10205	Phase CA Voltage - Compressor 1B	Indicates the measurement of voltage in Phase CA for Compressor 1B	Volts
AI-10206	Phase BC Voltage - Compressor 2B	Indicates the measurement of voltage in Phase BC for Compressor 2B	Volts
AI-10207	Phase CA Voltage - Compressor 2B	Indicates the measurement of voltage in Phase CA for Compressor 2B	Volts
AI-10208	Average Line Current Circuit 1	Indicates the average current, reported in Circuit 1	Amps
AI-10209	Average Line Current Circuit 2	Indicates the average current, reported in Circuit 2	Amps
AI-10210	Average Line Voltage Circuit 1	Indicates the average voltage, line-to-line reported in Circuit 1	Volts
AI-10211	Average Line Voltage Circuit 2	Indicates the average voltage, line-to-line reported in Circuit 2	Volts
AI-10212	Line Current L1 Circuit 1	Indicates the current for line/leg 1 of Circuit 1	Amps
AI-10213	Line Current L2 Circuit 1	Indicates the current for line/leg 2 of Circuit 1	Amps
AI-10214	Line Current L3 Circuit 1	Indicates the current for line/leg 3 of Circuit 1	Amps
AI-10215	Line Current L1 Circuit 2	Indicates the current for line/leg 1 of Circuit 2	Amps
AI-10216	Line Current L2 Circuit 2	Indicates the current for line/leg 2 of Circuit 2	Amps
AI-10217	Line Current L3 Circuit 2	Indicates the current for line/leg 3 of Circuit 2	Amps
AI-10218	Voltage L1-L2 Circuit 1	Indicates the voltage between line/leg L1 and L2 of Circuit 1	Volts
AI-10219	Voltage L2-L3 Circuit 1	Indicates the voltage between line/leg L2 and L3 of Circuit 1	Volts
AI-10220	Voltage L1-L3 Circuit 1	Indicates the voltage between line/leg L1 and L3 of Circuit 1	Volts
AI-10221	Voltage L1-L2 Circuit 2	Indicates the voltage between line/leg L1 and L2 of Circuit 2	Volts
AI-10222	Voltage L2-L1 Circuit 2	Indicates the voltage between line/leg L2 and L3 of Circuit 2	Volts
AI-10223	Voltage L1-L3 Circuit 2	Indicates the voltage between line/leg L1 and L3 of Circuit 2	Volts
AI-10224	Total Real Power	Indicates the total real power reported	Kilowatts
AI-10225	Line Frequency Circuit 1	Indicates the estimated input frequency for Circuit 1	No Units
AI-10226	Line Frequency Circuit 2	Indicates the estimated input frequency for Circuit 2	No Units
AI-10227	Power Factor Circuit 1	Indicates the reported power factor for Circuit 1	No Units
AI-10228	Power Factor Circuit 2	Indicates the reported power factor for Circuit 2	No Units
AI-10229	Power Demand Circuit 1	Indicates the reported power demand for Circuit 1	Kilowatts
AI-10230	Power Demand Circuit 2	Indicates the reported power demand for Circuit 2	Kilowatts

Table 8. ACRB 350–500 tons analog values

AV-10100	Chilled Water Setpoint	The value is normally provided by the BAS to send the Chilled Water Setpoint. The value is subject to arbitration logic in the controller, in which case it may or may not be used for control purposes	Degrees Fahrenheit
AV-10101	Demand Limit Setpoint	The value is normally provided by the BAS to send the Demand Limit Setpoint. The value is subject to arbitration logic in the controller, in which case it may or may not be used for control purposes	Percent

Table 9. ACRB 350–500 tons binary inputs

Object Identifier	Object Name	Description	Object States
BI-10100	Run Enable	Indicates that chiller is available to run or is currently running	0 = Run Not Enabled 1 = Run Enabled
BI-10101	Local Setpoint Control	Indicates the which setpoint is used for control purposes, Remote (BAS) or Local	0 = Remote control 1 = Local control
BI-10102	Limit Mode Relay Status	Indicates the status of the chiller limit relay	0 = Off 1 = On
BI-10103	Chiller Running State	Indicates whether the chiller is on (currently doing either cooling) or is considered off(not currently doing cooling)	0 = Off 1 = On
BI-10104	Maximum Capacity	Indicates the status of the maximum capacity relay	0 = Off 1 = On
BI-10106	Manual Override Exists	Indicated a manual override is present	0 = Off 1 = On
BI-10107	Compressor 1A Status	Indicates running state fo Compressor 1A	0 = Off 1 = Running
BI-10108	Compressor 2A Status	Indicates running state fo Compressor 2A	0 = Off 1 = Running
BI-10109	Emergency Stop	Indicates the status of the emergency stop function of the chiller	0 = Auto 1 = Emergency Stop - Manual Reset Required
BI-10110	Evaporator Water Pump Request	Indicates a request from the chiller to turn on the Evaporator Water Pump	0 = Off 1 = On
BI-10111	Evaporator Water Flow Status	Indicates the flow of water through evaporator	0 = No Flow 1 = Flow
BI-10112	Compressor 1B Status	Indicates running state of Compressor 1B	0 = Off 1 = Running
BI-10113	Compressor 2B Status	Indicates running state of Compressor 2B	0 = Off 1 = Running
BI-10114	Free Cooling Active	Indicated the free cooling mode is active	0 = Inactive 1 = Active
BI-10116	Diagnostic Present	Indicates whether diagnostic present	0 = Normal 1 = In Alarm
BI-10117	Diagnostic Shutdown Present	Indicates chiller is shut down due to diagnostics	0 = Normal 1 = In Alarm
BI-10118	Diagnostic: Manual Reset Required	Indicates when a diagnostic exists that requires manual reset	0 = Normal 1 = In Alarm
BI-10119	Diagnostic: Local Manual Reset Required	Indicates when a diagnostic exists that requires manual reset [Local only]	0 = Normal 1 = In Alarm
BI-10120	Diagnostic Present: Information	Indicates whether diagnostic present with Information Category	0 = Normal 1 = In Alarm
BI-10121	Diagnostic Present: Advisory	Indicates whether diagnostic present with Warning Category	0 = Normal 1 = In Alarm
BI-10122	Diagnostic Present: Critical	Indicates whether diagnostic present with Critical Category	0 = Normal 1 = In Alarm
BI-10123	Diagnostic Present: Service Required	Indicates whether diagnostic present with Service Required Category	0 = Normal 1 = In Alarm
BI-10124	External Auto Stop Input Status	Indicates the status of the externally-wired auto/stop input	0 = Stop 1 = Auto
BI-10125	Front Panel Auto Stop	Indicates the auto/stop status of the Front Panel	0 = Stop 1 = Auto
BI-10126	Noise Reduction Request Active	Indicates wherther Noise Reduction active	0 = Off 1 = On
BI-10127	Circuit 1 Lockout Front Panel	Indicates the lockout state of Circuit 1 Comprosser from Front Panel	0 = Normal 1 = Locked Out
BI-10128	Circuit 2 Lockout Front Panel	Indicates the lockout state of Circuit 2 Comprosser from Front Panel	0 = Normal 1 = Locked Out
BI-10129	Circuit 1 Lockout External	Indicates the lockout state of Circuit 1 Comprosser from External	0 = Normal 1 = Locked Out

Table 9. ACRB 350–500 tons binary inputs (continued)

Object Identifier	Object Name	Description	Object States
BI-10130	Circuit 2 Lockout External	Indicates the lockout state of Circuit 2 Comprosser from External	0 = Normal 1 = Locked Out
BI-10131	Circuit 1 Lockout Active	Indicates the lockout state of Circuit 1 Comprosser	0 = Normal 1 = Locked Out
BI-10132	Circuit 2 Lockout Active	Indicates the lockout state of Circuit 2 Comprosser	0 = Normal 1 = Locked Out

Table 10. ACRB 350–500 tons binary values

Object Identifier	Object Name	Description	Object States
BV-10100	Reset Diagnostic	Normally used by the BMS to initiate a request to reset any controller diagnostics	0 = Normal 1 = Reset
BV-10101	Noise Reduction Request BAS	Normally used by the BMS to command the chiller to enter a mode of operation where the noise of the unit is reduced	0 = Normal 1 = Reduce Noise
BV-10102	Circuit 1 Lockout BAS	Normally used by the BMS to lockout the Circuit-1 Compressor	0 = Normal 1 = Locked Out
BV-10103	Circuit 2 Lockout BAS	Normally used by the BMS to lockout the Circuit-2 Compressor	0 = Normal 1 = Locked Out
BV-10107	Energy Consumption Reset	Normally used by the BMS to reset the energy consumption accumulated total	0 = Accumulating 1 = Reset
BV-10108	Chiller Auto Stop Command BAS	Normally used by the BMS to command the chiller to start running if operating conditions are satisfied, or to stop the chiller from running.	0 = Stop 1 = Auto
BV-10109	Free Cooling Auto Stop Command BAS	Normally used the BMS to command the chiller to allow free cooling mode if conditions are satisfied, or to stop the free cooling mode from operating.	0 = Stop 1 = Auto
BV-10110	Free Cooling Compressor Lockout	Normally used by the BMS to lockout the Compressor while in free cooling mode	0 = Normal 1 = Locked Out

Table 11. ACRB 350–500 tons multi-state inputs

Object Identifier	Object Name	Description	Object States
MI-10100	Running Mode	Indicates the running state of the chiller	1 = Chiller Off 2 = Chiller In Start Mode 3= Chiller In Run Mode 4= Chiller In Pre-Shutdown Mode 5 = Chiller In Service Mode
MI-10101	Operating Mode	Indicates the operating mode of the chiller	1 = Cool 2 = Heat 3= Ice Making 4= Free Cooling
MI-10102	Refrigerant Type	Indicates the chiller refrigerant type	1 = R-11 $2 = R-12$ $3 = R-22$ $4 = R-123$ $5 = R-134a$ $6 = R-407C$ $7 = R-410A$ $8 = R-113$ $9 = R-114$ $10 = R-500$ $11 = R-502$ $12 = R-404A$ $13 = R-513A$ $14 = R-1233zd(E)$ $15 = R-514A$ $16 = R-1234ze(E)$
MI-10103	Cooling Type	Indicates the cooling Type of chiller	1 = Water Cooled 2 = Air Cooled

MI-10104 Manufacture Location Indicates the location that the chiller was manufactured 1 = Field Applied 3 = Pueblo 4 = Charmes 5 = Rushville 6 = Macon 7 = Wason 8 = Length 10 = ClerkWille 11 = Field 10 = ClerkWille 11 = Field 11 = Cruthe 11 = Cruthe 11 = Field 10 = ClerkWille 11 = Field 11 = Cruthe 11 = Field 10 = ClerkWille 11 = Field 10 = ClerkWille 11 = Field 11 = Cruthe 11 = Cruthe 11 = Field 10 = ClerkWille 11 = Field 11 = Cruthe 11 = Field 11 = Field 10 = ClerkWille 11 = Field 11 = Field 10 = ClerkWille 11 = Field 11 = Field 11 = Cruthe 11 = Field 11 = Cruthe 11 = Field 11 = Cruthe 11 = Field 11 = Cruthe 11 = Field 11 = Field 11 = Cruthe 11 = Cruthe 11 = Cruthe 11 = Cruthe 11 = Cruthe 11 = Cruthe 12 = Cruthe 13 = Cruthe 13 = Field 11 = Field 11 = Cruthe 13 = Cruthe 11 = Field 11 = Cruthe 11 = Field 11 = Cruthe 11 = Cruthe 11 = Cruthe 11 = Field 11 = Cruthe 11 = Cruthe 11 = Field 11 = Cruthe 11 =			otato inputo (continuou)	
MI-10105 Model Information [GEN2] Indicates the model information of chiller 2 = CVGF 4 = RTAF 6 = RTHA 7 = RTHB 8 = RTHC 9 = RTHC 9 = RTHC 11 = CTVD 11 = CTVB 11 = CTVB 12 = CVR 13 = CVHH 15 = VMAX 16 = GVAF 17 = RTWF 18 = RTHF 19 = RTAC 20 = CVHM 21 = RTAG 22 = CGAF 23 = RTXG 24 = GVWF 24 = GVWF 25 = HDWAA 26 = CMAC 27 = IPAK 28 = CXAF 29 = ACSA 30 = RTSF 31 = HSWAA 32 = ACRA 33 = RTEG 34 = ACXA 35 = CMAF 36 = ACRB Large 37 = ACRAS mail MI-10106 Chiller Setpoint Source Indicates the selected setpoint source for control 0 = DAS	MI-10104	Manufacture Location	Indicates the location that the chiller was manufactured	2 = La Crosse $3 = Pueblo$ $4 = Charmes$ $5 = Rushville$ $6 = Macon$ $7 = Waco$ $8 = Lexington$ $9 = Forsyth$ $10 = Clarksville$ $11 = Ft. Smith$ $12 = Penang$ $13 = Colchester$ $14 = Curitiba$ $15 = Taicang$ $16 = Taiwan$ $17 = Epinal$
MI-10106 Chiller Setpoint Source Indicates the selected setpoint source for control 2 = External	MI-10105	Model Information [GEN2]	Indicates the model information of chiller	2 = CVGF 3 = CVHS 4 = RTAE 5 = RTAF 6 = RTHA 7 = RTHB 8 = RTHC 9 = RTHD 10 = RTWE 11 = CTVD 12 = CVR 13 = CVHH 14 = CDHH 15 = VMAX 16 = GVAF 17 = RTWF 18 = RTHF 19 = RTAC 20 = CVHM 21 = RTAG 22 = CGAF 23 = RTXG 24 = GVWF 25 = HDWA 26 = CMAC 27 = IPAK 28 = CXAF 29 = ACSA 30 = RTSF 31 = HSWA 32 = ACRA 35 = CMAF 36 = ACRB Large
	MI-10106	Chiller Setpoint Source		2 = External

Table 11.	ACRB 350–500 tons multi-state inputs (continued)
	Aone dee tons man state mpats (continued)

Table 12. ACRB 350–500 tons multi-state values

Object Identifier	Object Name	Description	Object States
MV-10100	BAS Chiller Mode Command	Normally used by the BMS to command the chiller Mode	1 = Cool 2 = Heat 3= Ice Making 4= Free Cooling

Recycled Points

The Symbio[™] 800 controller ships from the factory pre-configured for the specific unit application. The points of the communicated interface (BACnet, Modbus, or LonTalk) vary based on the unit configuration. Only those points pertinent to that configuration are included in the interface.

Example: When the unit is configured for only two compressors, any points associated with compressors three and four are not be displayed on the Touch Screen interface or browserbased Web user interface. When configuration changes are made in the field, the points in the communication interface change accordingly to align with those features or user-added points.

Figure 13. Points

119 Trane Tyrobic"* 800 - v1.25.0013 (release) - Webult 123

TRAME Symbio 80)		😩 😯 Favorites 🏫 Home 🏨 Alarms 🤮 Admin (
mmary arms	Points Analog Points Binary Points Multistate Points	Recycled Points	
ita Logs	Binary Inputs Binary Outputs Binary Values		
oints	Name	Description	Value
chedules	C) realize	UT SATIFACIN	¥ diste:
larm Configuration	Condensate Overflow Input	Indicates the status of the condensate overflow input	Normal
aloc	Diagnostic Present	Diagnostic Present	In Alarm
nstallation	Timed Override Timer Is Active	Indicates whether or not the timed override timer is active	Inactive
	FDD: Outdoor Air Damper Not Modulating	FDD: Indicates when the outdoor air damper is not modulating but should be	Inactive
	Occupancy Input	Indicates the status of the occupancy input	Occupied
	Condenser Fan Circuit 1 Relay 1 Status	Indicates the status of condenser fan circuit 1, relay 1	on
	Diagnostic: Condensate Overflow Lockout	Indicates when a condensate overflow lockout diagnostic is present	No
	Unit Running State	Indicates whether the unit is off or an	0#
	Emergency Stop	Indicates the status of the emergency stop function of the unit	Auto
	Supply Fan Speed Limited	Supply fan speed is being increased or decreased due to a limit control action	Limited
	Supply Fan Output Status	Indicates the status of the supply fan output of the controller	off
	FQD: Outdoor Air Temperature Sensor Fallure	FDD: Indicates when the outdoor air temperature sensor has failed	Active
	C Economizer Ainside Status	Indicates the status of airside economizing	Inactive
	Compressor 18 Status	Indicates the operating status of compressor 1B	off
	Coll Frost Protection Status Circuit 1	Indicates the status of evaporator frost protection function for circuit 1	Inactive

Apr 22. 2029 05:41 846

Any of the factory-provided points can be removed from the communication interface through a feature known as recycling. When the user selects and deletes a factory point, that point is moved to Recycled Points and is removed from the interface. This feature offers technicians the ability to strategically provide only those interface points desired for a specific project or installation.

To remove a point from the interface:

- 1. On the left-hand navigation, select **Points**.
- 2. Each of the points are grouped by their native type (analog, binary or multi-state), and input, output, or value. Select the appropriate group at the top of the page.
- 3. Select one or more points from the list and select Actions... | Delete.

Figure 14. Delete points

lications 🔻	NAME AND A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTION OF A DESCRIPTIONO		
	Points		
mmary.	Analog Points Binary Points Multistate Points	Recycled Points	
irms	Binary Inputs Binary Outputs Binary Values		
ta Logs	Actions *		
	Log Data	Description	Value
hedules	Condensate Overflow Input	Indicates the status of the condensate overflow input	Normal
irm Configuration	1776 Concernation and a second		
ols	2 Diagnostic Present	Olagnostic Present	In Alarm
stallation	Timed Override Timer 1s Active	Indicates whether or not the timed override timer is active	Inactive
	E FDD: Outdoor Air Damper Not Modulating	FDD: Indicates when the outdoor air damper is not modulating but should be	Inactive
	Occupancy Input	Indicates the status of the occupancy input	Occupied
	Condenser Fan Circuit 1 Relay 1 Status	Indicates the status of condenser fan circuit 1, relay 1	on
	Diagnostic: Condensate Overflow Lockout	Indicates when a condensate overflow lockout diagnostic is present	No
	Unit Running State	Indicates whether the unit is off or an	0#
	Emergency Stop	Indicates the status of the emergency stop function of the unit	Auto
	Supply Fan Speed Limited	Supply fan speed is being increased or decreased due to a limit control action	Limited
	Supply fan Output Status	Indicates the status of the supply fan output of the controller	off
	FQD: Outdoor Air Temperature Sensor Fallure	FDD: Indicates when the outdoor air temperature sensor has failed	Active
	Economizer Ainside Status	Indicates the status of airside economizing	Inactive
	Compressor 18 Status	Indicates the operating status of compressor 1B	Off
	Coll Frost Protection Status Circuit 1	Indicates the status of evaporator frost protection function for circuit 1	Inactive

Note: User-created points cannot be recycled. Instead, when the user selects and deletes usercreated points, those points are permanently removed from the controller. Should the user decide later that one or more of the deleted user points are needed, they will need to be recreated.

To restore recycled points:

- 1. Navigate to the **Recycled Points** tab on the Points page.
- 2. Select one or more points to be restored, then click **Restore**.
- 3. Once the restore process is complete, the restored points are moved back to the appropriate tab depending on point type. The recycled points also appear in the communicated interface once they are restored.

Figure 15. Recycled points tab

cations 🔹	Poin	ts			
mary.					
ns	Resto		state Points Recycled Points		
Logs		Point Type	Instance	Name	
its					
dutes		Binary Input	10140	Unit Running State	
n Configuration	0	Binary Input	10176	Diagnostic Present	
Hation	Ċ.	Binary Input	10614	Diagnostic: Condensate Overflow Lockout	
0					

BAS-SVP045B-EN

Modbus Protocol Configuration

To access the Symbio 800 Protocol Configuration page:

- 1. Connect to the Symbio 800 web interface.
- 2. On the left-hand navigation, click Installation.
- 3. Click Identification and Communications.

Figure 16. Identification and Communications

Installation

Symbio 800 Function	
Symbio 800 Name IP Address Host Name This Symbio 800 Functions As	Symbio 800 192.168.4.15 Symbio-E18L01166 Standalone Symbio 800
1. Configure Basic Settings	For This Symbio 800
Task	Description
Regional Specifications	Change the time zone, date, and time.
Symbio 800 System Units	View the Symbio 800 system units.
Identification and Communication	Change and specify equipment name, location name, BACnet addressing, IP addressing and Network Connectivity settings for the Symbio 800.
USB Ports and microSD	View USB Ports and microSD status and safely unmount devices.
Licensing	License the Symbio 800.

4. Click the Protocol Configuration tab.

Figure 17. Protocol Configuration

Identification and Communications

< Installation Edit					
Symbio 800 Identification	Protocol Configuration	Air-Fi Configuration	IP Configuration	Intelligent Services	Network Connectivity and SSL
Name	Symbio 800				
Location	222				
Description	222				
Equipment Serial Number	1550				
Equipment Model Number	585				
Equipment Order Number	555				

5. View the existing Protocol Configuration settings.

Modbus Protocol Settings

The rotary address on the Symbio 800 controller sets the Modbus address, sometimes called a device ID. Each Modbus server controller on the same Modbus RTU link must have a unique address. The valid range of Modbus RTU server addresses for the Symbio 800 is: **001 – 247**.

Important: Symbio 800 controller will disable Modbus RTU communications if the rotary address is 000! Changing the rotary address will immediately take affect and does NOT require a power cycle to the Symbio 800 controller.

Figure 18. Modbus protocol settings

mitallation Edit						
bio 800 Identification Protocol Configu	ration Air-Fi Configuration	IF Configuration	Intelligent Services	Network Connectivity and SSL		
tem Protocol	and the second state of the second	11-2-11-11-11-11-11-11-11-11-11-11-11-11				
dbus RTU +						
edbus RTU +						
Address	240			Bood Rate	19306 bps +	
Address	1			Road Rate Parity	15500 kps - Even -	

- 1. Set the Communication Protocol drop down to Modbus RTU.
- 2. The rotary dial setting field shows the physical setting of the rotary dials on the Symbio 800. The address field shows the Modbus RTU address. The Modbus RTU address will match the rotary dial setting unless the Use Software address option is used. The recommendation is to change the Modbus address using the physical rotary dials on the Symbio 800 controller.
- Verify the baud rate (default is 19200 bps), parity (default is Even), and stop bits (default is 1). All Modbus RTU devices on a link must communicate using the same communication parameters.

Modbus Wiring

The Modbus RTU communication wire is connected to the P1 Link. Observe wire polarity when connecting to the + and – terminals. The + terminals and the – terminals are internally connected. The second set of + and – terminals on the P1 Link are used to make it easier to wire the next Modbus RTU device in the daisy chain.

Refer to the TIA/EIA 485 standard for detailed information on Modbus RTU wiring.

Modbus TCP (Ethernet)

The Symbio 800 controller can communicate Modbus TCP using a standard Ethernet cable. Connect an Ethernet cable with RJ-45 connectors to Ethernet port 1 and the IP network. The Symbio 800 controller does not support the optional Wi-Fi module with Modbus TCP communications. The rotary address on the Symbio 800 controller is not used with Modbus TCP communications. Ethernet Port 2 is reserved for the optional TD7 display.

1. Set the System Protocol drop down to Modbus TCP.

Figure 19. Set system protocol

Identification ar	nd Communicat	tions				
Constallation Edit						
Symbio 800 Identification	Protocol Configuration	Air-Fi Configuration	IP Configuration	Intelligent Services	Network Connectivity and SSI,	
System Protocol						
Communication Protocol						

2. Click the IP Configuration tab to set the IP address of the Symbio 800 controller.

Figure 20. Set IP address

Identification and Communicat	ions			
Installation Edit Symbol 800 Identification Protocol Configuration	Nr-Fi Configuration	Network Connectivity and SSL		
Host Name Symble-#18,01166 Ethernet 1				
		Ethernet 2 (Connection to TO	0-7 operator display)	
Hethod fer Ohtaining IP Address HAC Address IP Address Subnet Nesk Default Gateway	Specified Static address used 00:12 (84:04):20:49 192:168:4:15 295:255:255.0 192:108:4:1	1P Address Subnet Mask	108.86.18.9 255.255.255.252	

3. Click Edit.

Figure 21. Edit IP configuration

Identification and Communications

mbio 800 Identif	cation	Protoc	ol Con	figur	ion Air-Fi Config	uration IF	Configuration	Intelligent Services	Network Connectivity and SSL
ost Name	Symbio-E18	L01160	5						
Ethernet 1				-					
🔾 Obtain IP Addr	ess Automa	tically	using	DHC					
Use the followi	ng IP addre	ss							
IP Address	192 . 1	68 .	4	. 1					
Subnet Mask	255 . 2	55.	255	. (
Default Gateway	192 . 1	68 .	4		1				
Ethernet 2 (Con	nection to	TD-7	opera	tor o	splay)				
IP Address 19	98 . 80	. 18	: •0	9					

- 4. Setup the Ethernet 1 port to either 'Obtain an IP addresss Automatically using DHCP' or use a static IP address by manually entering the IP address, subnet mask, and default gateway. The IP address information is typically provided by the local IT administrator.
- 5. Set the Preferred IP Interface to Ethernet 1.
- 6. Set up the DNS section if using a Domain Name System server to identify the Symbio 800 controller by host name.

Modbus Points List

Object Naming Conventions

The communicated points for the Symbio[™] controllers are generally named according to their function. While many of the points are read-only, others include both read and write capability. The established naming convention helps to identify the capabilities of each point. For most points, the suffix identifies the capability according to the following definition.

While there are some exceptions, the majority of the points have been defined according to these guidelines.

Suffix	Description
Status	Points with the Status suffix are defined as read-only. The status point reports the value being used by the controller.
Local	Points with the Local suffix are defined as read-only. The local point reports values associated with controller sensors, both wired and wireless. The local value may or may not be actively used by the controller, depending on the presence or absence of a communicated value (BAS). When both a local and communicated value exist, the communicated value is used.
Active	Points with the Active suffix are defined as read-only. Points designated as active are normally the result of the arbitration between a communicated value (BAS) and at least one value local to the equipment, such as a sensor or default setpoint. The active point reports the value being used by the controller.
Setpoint	Points with the Setpoint suffix are defined as either read-only or read/write. For BACnet, the binary input, analog input and multi-state input points are all read- only. These setpoints report the value currently in use by the controller. The analog value, binary value and multi-state value points are all read/write. These points are provided for use by the building automation system (BAS). When used, these points are written internally to arbitration logic. This defines the interaction with hardwired points, editable software configuration points and the relinquish default value/state. Refer to the Appendix for additional information.
Input	Points with the Input suffix are defined as read-only. These points normally reflect the status of a sensor input, either hardwired or communicating wirelessly (Air- Fi). However, the input point reflects the arbitrated result of the controller sensor input and a communicated value, if present. When both a controller sensor and communicated value exist, the controller will use and report the communicated value.
Arbitrator	Points with the "Arbitrator" suffix are to be used as read-only. The arbitrator prioritizes inputs from communicating points, hardwired points and stored defaults points. The priority array of the arbitration point displays each of the values provided, including the active status, indicating which of the input sources is being used. Refer to the Appendix for additional information.
BAS	Points with the BAS suffix are defined as read/write. These points are provided for use by the building automation system (BAS). When used, these points are written to arbitration logic. This defines the interaction with hardwired points, editable software configuration points and the relinquished default value/state. Refer to the Appendix for additional information.
Command	Points with the Command suffix are defined as read/write. These points are written to change the default behavior of the controller. Once written, these point values may be persisted.
Request	Points with the Request suffix are defined as read/write. These points are written to change the operating behavior of the controller.

Object Data Points and Diagnostic Data Points

.

ACRB 150–300 Tons Data Points

The following tables are sorted as follows:

Tables are listed by input/output type and sorted by object identifier. These tables provide the user with the units type for each object type.

• Tables are sorted by object name and provide a complete list of object names, types, values/ ranges, and descriptions.

Note: Not all points are available to the user. The available data points are defined during self-configuration and are dependent on the type of equipment.

 Table 13.
 ACRB 150–300 tons analog inputs

Modbus Register	Data Type	Object Name	Description	Units
30011	Float	Active Chilled Water Setpoint	Indicates the value of the active Chilled Water Setpoint actively being used by the chiller	Degrees Fahrenheit
30013	Float	Evaporator Entering Water Temperature	Indicates the current temperature of the water entering the evaporator	Degrees Fahrenheit
30015	Float	Evaporator Leaving Water Temperature	Indicates the current temperature of the water leaving the evaporator	Degrees Fahrenheit
30017	Float	Calculated Chiller Capacity	Indicates the capacity the chiller is currently using	Tons of Refrigeration
30019	Float	Active Demand Limit Setpoint	Indicates the demand limit setpoint value actively being used by the chiller	Percent
30021	Float	Unit Power Consumption	Indicates the measurement of the power being consumed by the Chiller	Kilowatts
30025	Float	Outdoor Air Temperature	Indicates the current temperature of the outdoor air	Degrees Fahrenheit
30027	Float	Evaporator Refrigerant Pressure Circuit 1	refrigerant in the evaporator on circuit 1	Pound Force per Square Inch
30029	Float	Condenser Refrigerant Pressure Circuit	Indicates the current pressure of the refrigerant in the condenser on circuit 1	Pound Force per Square Inch
30031	Float	Differential Refrigerant Pressure Circuit 1	Indicates the pressure difference between the suction and discharge lines on circuit 1	Pound Force per Square Inch
30033	Float	Evaporator Saturated Refrigerant Temperature Circuit 1	Indicates the saturated_x000D_ refrigerant temperature of the evaporator on circuit 1	Degrees Fahrenheit
30035	Float	Condenser Saturated Refrigerant Temperature Circuit 1	Indicates the saturated_x000D_ refrigerant temperature of the condenser on circuit 1	Degrees Fahrenheit
30037	Float	Evaporator Refrigerant Pressure Circuit 2	refrigerant in the evaporator on circuit 2	Pound Force per Square Inch
30039	Float	Condenser Refrigerant Pressure Circuit 2	refrigerant in the condenser on circuit 2	Pound Force per Square Inch
30041	Float	Differential Refrigerant Pressure Circuit 2	Indicates the pressure difference between the suction and discharge lines on circuit 2	Pound Force per Square Inch
30043	Float	Evaporator Saturated Refrigerant Temperature Circuit 2	Indicates the saturated_x000D_ refrigerant temperature of the evaporator on circuit 2	Degrees Fahrenhei
30045	Float	Condenser Saturated Refrigerant Temperature Circuit 2	Indicates the saturated_x000D_ refrigerant temperature of the condenser on circuit 2	Degrees Fahrenhei
30047	Float	Refrigerant Discharge Temperature - Compressor 1A	Indicates the current temperature of the refrigerant being discharged from Compressor 1A	Degrees Fahrenhei
30049	Float	Oil Pressure - Compressor 1A	Indicates the pressure of the oil on the high pressure side of Compressor 1A	Pound Force per Square Inch
30051	Float	Refrigerant Discharge Temperature - Compressor 2A	Indicates the current temperature of the refrigerant being discharged from Compressor 2A	Degrees Fahrenhei
30053	Float	Oil Pressure - Compressor 2A	Indicates the pressure of the oil on the high pressure side of Compressor 2A	Pound Force per Square Inch
30055	Float	Air Flow Percentage Circuit 1	Indicates the approximate air flow percentage of Circuit 1	Percent
30057	Float	Air Flow Percentage Circuit 2	Indicates the approximate air flow percentage of Circuit 2	Percent
30059	Float	Starts - Compressor 1A	Indicates the number of starts of Compressor 1A	No Units
30061	Float	Run Time - Compressor 1A	Indicates the run time of Compressor 1A, in hours Indicates the % of the available speed being	Hours
30063	Float	Compressor 1A Speed Status	used by Compressor 1A Indicates the first temperaure sensor of the	Percent
30065	Float	Motor Winding Temperature 1 Circuit 1	windings on motor 1A	Degrees Fahrenhei
30067	Float	Motor Winding Temperature 2 Circuit 1	Indicates the second temperaure sensor of the windings on motor 1A	Degrees Fahrenhei
30069	Float	Drive Motor Current U RLA Compressor 1A	Indicates the measurement of Line 1 current at AFD for Compressor 1A in terms of % RLA	Percent

Modbus Register	Data Type	Object Name	Description	Units
30071	Float	1A	Indicates the measurement of Line 2 current at AFD for Compressor 1A in terms of % RLA	Percent
30073	Float	1A	Indicates the measurement of Line 3 current at AFD for Compressor 1A in terms of % RLA	Percent
30075	Float	Drive Motor Average Current RLA Compressor 1A	Indicates the average current at AFD for Compressor 1A in terms of % RLA	Percent
30077	Float	Drive Motor Current U Compressor 1A	Indicates the measurement of Line 1 current at AFD for Compressor 1A in terms of Amps	Amps
30079	Float	Drive Motor Current V Compressor 1A	Indicates the measurement of Line 2 current at AFD for Compressor 1A in terms of Amps	Amps
30081	Float	Drive Motor Current W Compressor 1A	Indicates the measurement of Line 3 current at AFD for Compressor 1A in terms of Amps	Amps
30083	Float	Drive Motor Voltage UV Circuit 1	Indicates the measurement of voltage between Line 1 to 2 at the AFD for Compressor 1A	Volts
30085	Float	Drive Motor Voltage VW Circuit 1	Indicates the measurement of voltage between Line 2 to 3 at the AFD for Compressor 1A	Volts
30087	Float	Drive Motor Voltage WU Circuit 1	Indicates the measurement of voltage between Line 3 to 1 at the AFD for Compressor 1A	Volts
30089	Float	Drive Motor Average Voltage Circuit 1	Indicates the average voltage line to line at AFD for Compressor 1A	Volts
30091	Float	Drive DC Bus Voltage Circuit 1	Indicates the voltage of the DC Bus from the AFD for Compressor 1A	Volts
30093	Float	Drive Output Power Circuit 1	Indicates the power output from the AFD for Compressor 1A	Kilowatts
30095	Float	Drive Input Power Circuit 1	Indicates the power input for the AFD for Compressor 1A	Kilowatts
30097	Float	Drive Line Average Voltage Circuit 1	Indcates the average input voltage at the AFD for Compressor 1A	Volts
30099	Float	Drive Average Line Current Circuit 1	Indcates the average input current at the AFD for Compressor 1A	Amps
30101	Float	Drive Line Frequency Circuit 1	Indicates the estimated input frequency at the AFD for Compressor 1A	feet per second per second
30103	Float	AFD Frequency Circuit 1	Indicates the frequency at the stator for AFD for Compressor 1A	feet per second per second
30105	Float	AFD Transistor Temperature Circuit 1	Indicates the temperature of the transistor for the AFD for Compressor 1A	Degrees Fahrenheit
30107	Float	Drive Inverter Base Temperature Circuit 1	Indicates the temperature of the inverter base for the AFD for Compressor 1A	Degrees Fahrenheit
30109	Float	Drive Rectifier Base Temperature Circuit 1	Indicates the temperature of the rectifier base for the AFD for Compressor 1A	Degrees Fahrenheit
30111	Float	Starts - Compressor 2A	Indicates the number of starts of Compressor 2A	No Units
30113	Float	Run Time - Compressor 2A	Indicates the run time of_x000D_ Compressor 2A, in hours	No Units
30115	Float	Compressor 2A Speed Status	Indicates the % of the available speed being used by Compressor 2A	Percent
30117	Float	Motor Winding Temperature 1 Circuit 2	Indicates the first temperaure sensor of the windings on motor 2A	Degrees Fahrenheit
30119	Float	Motor Winding Temperature 2 Circuit 2	Indicates the second temperaure sensor of the windings on motor 2A	Degrees Fahrenheit
30121	Float	2A	Indicates the measurement of Line 1 current at AFD for Compressor 2A in terms of % RLA	Percent
30123	Float	2A	Indicates the measurement of Line 2 current at AFD for Compressor 2A in terms of % RLA	Percent
30125	Float	2A	Indicates the measurement of Line 3 current at AFD for Compressor 2A in terms of % RLA	Percent
30127	Float	Drive Motor Average Current RLA Compressor 2A	Indicates the average current at AFD for Compressor 2A in terms of % RLA	Percent
30129	Float	Drive Motor Current U Compressor 2A	Indicates the measurement of Line 1 current at AFD for Compressor 2A in terms of Amps	Amps
30131	Float	Drive Motor Current V Compressor 2A	Indicates the measurement of V line current at AFD for Compressor 2A in terms of Amps	Amps
30133	Float	Drive Motor Current W Compressor 2A	Indicates the measurement of W line current at AFD for Compressor 2A in terms of Amps	Amps
30135	Float	Drive Motor Voltage UV Circuit 2	Indicates the measurement of voltage between Line 1 to 2 at AFD for Compressor 2A	Volts

Table 13. ACRB 150–300 tons analog inputs (continued)

Modbus Register	Data Type	Object Name	Description	Units
30137	Float	Drive Motor Voltage VW Circuit 2	Indicates the measurement of voltage between Line 2 to 3 at AFD for Compressor 2A	Volts
30139	Float	Drive Motor Voltage WU Circuit 2	Indicates the measurement of voltage between Line 3 to 1 at AFD for Compressor 2A	Volts
30141	Float	Drive Motor Average Voltage Circuit 2	Indicates the average voltage line to line at AFD for Compressor 2A	Volts
30143	Float	Drive DC Bus Voltage Circuit 2	Indicates the voltage of the DC Bus from the AFD for Compressor 2A	Volts
30145	Float	Drive Output Power Circuit 2	Indicates the power output from the AFD for Compressor 2A	Kilowatts
30147	Float	Drive Input Power Circuit 2	Indicates the power input for the AFD for Compressor 2A	Kilowatts
30149	Float	Drive Line Average Voltage Circuit 2	Indcates the average input voltage at the AFD for Compressor 2A	Volts
30151	Float	Drive Average Line Current Circuit 2	Indcates the average input current at the AFD for Compressor 2A	Amps
30153	Float	Drive Line Frequency Circuit 2	Indicates the estimated input frequency at the AFD for Compressor 2A	feet per second per second
30155	Float	AFD Frequency Circuit 2	Indicates the frequency at the stator for AFD for Compressor 2A	feet per second per second
30157	Float	AFD Transistor Temperature Circuit 2	Indicates the temperature of the transidtor for the AFD for Compressor 2A	Degrees Fahrenheit
30159	Float	2	Indicates the temperature of the inverter base for the AFD for Compressor 2A	Degrees Fahrenheit
30161	Float	Drive Rectifier Base Temperature Circuit 2	Indicates the temperature of the rectifier base for the AFD for Compressor 2A	Degrees Fahrenheit
30163	Float	Number Of Circuits	Indicates the number of refrigeration circuits in the chiller	No Units
30165	Float	Number Of Compressors Circuit 1	Indicates the number of compressors on circuit 1 of the chiller	No Units
30167	Float	Number Of Compressors Circuit 2	Indicates the number of compressors on circuit 2 of the chiller	No Units
30169	Float	Free Cooling Capacity	Indicates the % capacity of the free cooling being used	Percent
30171	Float	Free Cooling Entering Water Temperature	Indiactes the entering water temperature of the free cooling circuit	Degrees Fahrenheit
30173	Float	Energy Consumption Lifetime	Indicates the total energy consumption of the chiller (for the lifetime of the chiller)	Kilowatts hour
30175	Float	Energy Consumption	Indicates the total energy consumption of the chiller (since last accumulation reset)	Kilowatts hour
30177	Float	Unit Source ID	Indicates the last diagnostic of the chiller Separately, individual diagnostics are reported with dedicated points, variables, registers	No Units
30179	Float	Chiller Design Capacity	Indicates the design capacity of chilller	Tons of Refrigeration
30181	Float	Active Cool/Heat Setpoint Temperature	Indicates the value of the active Chilled Water Setpoint actively being used by the chiller	Degrees Fahrenheit
30183	Float	Actual Running Capacity	Indicates the measurement of the power being consumed by the Chiller	Percent

Table 13.	ACRB 150–300 tons analog inputs (continued)
-----------	---

Table 14.	ACRB 150–300 tons analog values
-----------	---------------------------------

Modbus Register	Data Type	Object Name	Description	Units
40010	Float	Chilled Water Setpoint	The value is normally provided by the BAS to send the Chilled Water Setpoint. The value is subject to arbitration logic in the controller, in which case it may or may not be used for control purposes	Degrees Fahrenheit
40012	Float	Demand Limit Setpoint	The value is normally provided by the BAS to send the Demand Limit Setpoint. The value is subject to arbitration logic in the controller, in which case it may or may not be used for control purposes	Percent

Modbus Register	Data Type	Object Name	Description	Object States
33010	Signed Integer 16-bit	Run Enable	Indicates that chiller is available to run or is currently running	0 = Run Not Enabled 1 = Run Enabled
33011	Signed Integer 16-bit	Local Setpoint Control	Indicates the which setpoint is used for control purposes, Remote (BAS) or Local	0 = Remote control 1 = Local control
33012	Signed Integer 16-bit	Limit Mode Relay Status	Indicates the status of the chiller limit relay	0 = Off 1 = On
33013	Signed Integer 16-bit	Chiller Running State	Indicates whether the chiller is on (currently doing either cooling) or is considered off(not currently doing cooling)	0 = Off 1 = On
33014	Signed Integer 16-bit	Maximum Capacity Relay	Indicates the status of the maximum capacity relay	0 = Off 1 = On
33015	Signed Integer 16-bit	Evaporator Water Pump Command	Indicates a request from the chiller to turn on the Evaporator Water Pump	0 = Off 1 = On
33016	Signed Integer 16-bit	Evaporator Water Flow Status	Indicates the flow of water through evaporator	0 = No Flow 1 = Flow
33017	Signed Integer 16-bit	Manual Override Exists	Indicated a manual override is present	0 = Off 1 = On
33018	Signed Integer 16-bit	Emergency Stop	Indicates the status of the emergency stop function of the chiller	0 = Auto 1 = Emergency Stop - Manual Reset Require
33019	Signed Integer 16-bit	Diagnostic Present	Indicates whether diagnostic present	0 = Normal 1 = In Alarm
33020	Signed Integer 16-bit	Diagnostic Shutdown Present	Indicates chiller is shut down due to diagnostics	0 = Normal 1 = In Alarm
33021	Signed Integer 16-bit	Diagnostic: Manual Reset Required	Indicates when a diagnostic exists that requires manual reset	0 = Normal 1 = In Alarm
33022	Signed Integer 16-bit	Diagnostic: Local Manual Reset Required	Indicates when a diagnostic exists that requires manual reset [Local only]	0 = Normal 1 = In Alarm
33023	Signed Integer 16-bit	Diagnostic Present: Information	Indicates whether diagnostic present with Information Category	0 = Normal 1 = In Alarm
33024	Signed Integer 16-bit	Diagnostic Present: Warning	Indicates whether diagnostic present with Warning Category	0 = Normal 1 = In Alarm
33025	Signed Integer 16-bit	Diagnostic Present: Critical	Indicates whether diagnostic present with Critical Category	0 = Normal 1 = In Alarm
33026	Signed Integer 16-bit	Diagnostic Present: Service Required	Indicates whether diagnostic present with Service Required Category	0 = Normal 1 = In Alarm
33027	Signed Integer 16-bit	Running Status Cprsr1A	Indicates running state fo Compressor 1A	0 = Off 1 = Running
33028	Signed Integer 16-bit	Running Status Cprsr2A	Indicates running state fo Compressor 2A	0 = Off 1 = Running
33029	Signed Integer 16-bit	Free Cooling Active	Indicated the free cooling mode is active	0 = Inactive 1 = Active
33030	Signed Integer 16-bit	External Auto Stop	Indicates the status of the externally-wired auto/ stop input	0 = Stop 1 = Auto
33031	Signed Integer 16-bit	Front Panel Auto/Stop	Indicates the auto/stop status of the Front Panel	0 = Stop 1 = Auto
33032	Signed Integer 16-bit	Noise Reduction Request Active	Indicates whether Noise Reduction active	0 = Off 1 = On

Table 15. ACRB 150–300 tons binary inputs

Table 16.	ACRB 150–300 tons binary value	es
-----------	--------------------------------	----

Modbus Register	Data Type	Object Name	Description	Object States
43010	Signed Integer 16-bit	Reset Diagnostic	Normally used by the BMS to initiate a request to reset any controller diagnostics	0 = Normal 1 = Reset
43011	Signed Integer 16-bit	Noise Reduction Request BAS	Normally used by the BMS to command the chiller to enter a mode of operation where the noise of the unit is reduced	0 = Normal 1 = Reduce Noise
43012	Signed Integer 16-bit	Chiller Auto Stop Command BAS	Normally used by the BMS to command the chiller to start running if operating conditions are satisfied, or to stop the chiller from running.	0 = Stop 1 = Auto
43013	Signed Integer 16-bit	Free Cooling Auto Stop Command BAS	Normally used the BMS to command the chiller to allow free cooling mode if conditions are satisfied, or to stop the free cooling mode from operating.	0 = Stop 1 = Auto
43014	Signed Integer 16-bit	Free Cooling Compressor Lockout	Normally used by the BMS to lockout the Compressor while in free cooling mode	0 = Normal 1 = Locked Out

Table 16. ACRB 150–300 tons binary values (continued)

Modbus Register	Data Type	Object Name	Description	Object States
43015	Signed Integer 16-bit	Circuit 1 Lockout BAS	Normally used by the BMS to lockout the Circuit-1 Compressor	0 = Normal 1 = Locked Out
43016	Signed Integer 16-bit	Circuit 2 Lockout BAS	Normally used by the BMS to lockout the Circuit-2 Compressor	0 = Normal 1 = Locked Out
43017	Signed Integer 16-bit	Energy Consumption Reset	Normally used by the BMS to reset the energy consumption accumulated total	0 = Accumulat- ing 1 = Reset

Table 17. ACRB 150-300 tons multi-state inputs

Modbus Register	Data Type	Object Name	Description	Object States
32010	Unsigned Integer 16-bit	Running Mode	Indicates the running state of the chiller	1 = Chiller Off 2 = Chiller In Start Mode 3= Chiller In Run Mode 4= Chiller In Pre-Shutdown Mode 5 = Chiller In Service Mode
32011	Unsigned Integer 16-bit	Operating Mode	Indicates the operating mode of the chiller	1 = Cool 2 = Heat 3= Ice Making 4= Free Cooling
32012	Unsigned Integer 16-bit	Chiller Setpoint Source	Indicates the selected setpoint source for control purpose	1 = BAS 2 = External 3 = Front Panel
32013	Unsigned Integer 16-bit	Refrigerant Type	Indicates the chiller refrigerant type	1 = R-11 2 = R-12 3 = R-22 4 = R-123 5 = R-134a 6 = R-407C 7 = R-410A 8 = R-113 9 = R-114 10 = R-500 11 = R-500 11 = R-502 12 = R-404A 13 = R-513A 14 = R-1233zd(E) 15 = R-514A 16 = R-1234ze(E)
32014	Unsigned Integer 16-bit	Cooling Type	Indicates the cooling Type of chiller	1 = Water Cooled 2 = Air Cooled

Modbus Register	Data Type	Object Name	Description	Object States
32015	Unsigned Integer 16-bit	Manufacture Location	Indicates the location that the chiller was manufactured	1 = Field Applied $2 = La Crosse$ $3 = Pueblo$ $4 = Charmes$ $5 = Rushville$ $6 = Macon$ $7 = Waco$ $8 = Lexington$ $9 = Forsyth$ $10 = Clarksville$ $11 = Ft. Smith$ $12 = Penang$ $13 = Colchester$ $14 = Curitiba$ $15 = Taicang$ $16 = Taiwan$ $17 = Epinal$ $18 = Golbey$
32016	Unsigned Integer 16-bit	Model Information [GEN2]	Indicates the model information of chiller	$\begin{array}{c} 1 = {\rm CVHF} \\ 2 = {\rm CVGF} \\ 3 = {\rm CVHS} \\ 4 = {\rm RTAE} \\ 5 = {\rm RTAF} \\ 6 = {\rm RTHA} \\ 7 = {\rm RTHB} \\ 8 = {\rm RTHC} \\ 9 = {\rm RTHD} \\ 10 = {\rm RTWE} \\ 11 = {\rm CTVD} \\ 12 = {\rm CVR} \\ 13 = {\rm CVHH} \\ 14 = {\rm CDHH} \\ 15 = {\rm VMAX} \\ 16 = {\rm GVAF} \\ 17 = {\rm RTWF} \\ 18 = {\rm RTHF} \\ 19 = {\rm RTAC} \\ 20 = {\rm CVHM} \\ 21 = {\rm RTAG} \\ 22 = {\rm CGAF} \\ 23 = {\rm RTXG} \\ 24 = {\rm GVWF} \\ 25 = {\rm HDWA} \\ 26 = {\rm CMAC} \\ 27 = {\rm IPAK} \\ 28 = {\rm CXAF} \\ 29 = {\rm ACSA} \\ 30 = {\rm RTSF} \\ 31 = {\rm HSWA} \\ 32 = {\rm ACRA} \\ 33 = {\rm RTEG} \\ 34 = {\rm ACXA} \\ 35 = {\rm CMAF} \\ 36 = {\rm ACRB} \\ {\rm Large} \\ 37 = {\rm ACRB} \\ {\rm Small} \end{array}$

Table 17. ACRB 150–300 tons multi-state inputs (continued)

Table 18. ACRB 150–300 tons multi-state values

Modbus Register	Data Type	Object Name	Description	Object States
42010	Unsigned Integer 16-bit	BAS (hiller Mode (ommand		1 = Cool 2 = Heat 3= Ice Making 4= Free Cooling

ACRB 350–500 Tons Data Points

Table 19. ACRB 350–500 tons analog inputs

Modbus Register	Data Type	Object Name	Description	Units
30010	Float	Active Chilled Water Setpoint	Indicates the value of the active Chilled Water Setpoint actively being used by the chiller	Degrees Fahrenheit
30012	Float	Active Demand Limit Setpoint	Indicates the demand limit setpoint value actively being used by the chiller	Percent
30016	Float	Evaporator Entering Water Temperature	Indicates the current temperature of the water entering the evaporator	Degrees Fahrenheit
30018	Float	Evaporator Leaving Water Temperature	Indicates the current temperature of the water leaving the evaporator	Degrees Fahrenheit
30022	Float	Unit Power Consumption	Indicates the measurement of the power being consumed by the Chiller	Kilowatts
30024	Float	Outdoor Air Temperature	Indicates the current temperature of the outdoor air	Degrees Fahrenheit
30030	Float	Evaporator Refrigerant Pressure Circuit	Indicates the current pressure of the refrigerant in the evaporator on circuit 1	Pound Force per Square Inch
30032	Float	Condenser Refrigerant Pressure Circuit	Indicates the current pressure of the refrigerant in the condenser on circuit 1	Pound Force per Square Inch
30034	Float	Differential Refrigerant Pressure Circuit 1	suction and discharge lines on circuit 1	Pound Force per Square Inch
30036	Float	Evaporator Saturated Refrigerant Temperature Circuit 1	Indicates the saturated_x000D_ refrigerant temperature of the evaporator on circuit 1	Degrees Fahrenhei
30038	Float	Condenser Saturated Refrigerant Temperature Circuit 1	Indicates the saturated_x000D_ refrigerant temperature of the condenser on circuit 1	Degrees Fahrenhei
30040	Float	Evaporator Refrigerant Pressure Circuit 2	Indicates the current pressure of the refrigerant in the evaporator on circuit 2	Pound Force per Square Inch
30042	Float	Condenser Refrigerant Pressure Circuit 2	Indicates the current pressure of the refrigerant in the condenser on circuit 2	Pound Force per Square Inch
30044	Float	Differential Refrigerant Pressure Circuit 2	Indicates the pressure difference between the suction and discharge lines on circuit 2	Pound Force per Square Inch
30046	Float	Evaporator Saturated Refrigerant Temperature Circuit 2	Indicates the saturated_x000D_ refrigerant temperature of the evaporator on circuit 2	Degrees Fahrenhei
30048	Float	Condenser Saturated Refrigerant Temperature Circuit 2	Indicates the saturated_x000D_ refrigerant temperature of the condenser on circuit 2	Degrees Fahrenhei
30050	Float	Refrigerant Discharge Temperature - Compressor 1A	Indicates the current temperature of the refrigerant being discharged from Compressor 1A	Degrees Fahrenhei
30052	Float	High Side Oil Pressure - Compressor 1A	Indicates the pressure of the oil on the high pressure side of Compressor 1A	Pound Force per Square Inch
30054	Float	Refrigerant Discharge Temperature - Compressor 2A	Indicates the current temperature of the refrigerant being discharged from Compressor 2A	Degrees Fahrenhei
30056	Float	High Side Oil Pressure - Compressor 2A	Indicates the pressure of the oil on the high pressure side of Compressor 2A	Pound Force per Square Inch
30058	Float	Air Flow Percentage Circuit 1	Indicates the approximate air flow percentage of Circuit 1	Percent
30060	Float	Air Flow Percentage Circuit 2	Indicates the approximate air flow percentage of Circuit 2	Percent
30062	Float	Drive Motor Average Voltage Circuit 1	Indicates the average voltage line to line at AFD for Compressor 1A	Volts
30064	Float	Drive Motor Current U Circuit 1	Indicates the measurement of Line 1 current at AFD for Compressor 1A in terms of Amps	Amps
30066	Float	Drive Motor Current V Circuit 1	Indicates the measurement of Line 2 current at AFD for Compressor 1A in terms of Amps	Amps
30068	Float	Drive Motor Current W Circuit 1	Indicates the measurement of Line 3 current at AFD for Compressor 1A in terms of Amps	Amps
30070	Float	Drive Motor Current U RLA Circuit 1	Indicates the measurement of Line 1 current at AFD for Compressor 1A in terms of % RLA	Percent
30072	Float	Drive Motor Current V RLA Circuit 1	Indicates the measurement of Line 2 current at AFD for Compressor 1A in terms of % RLA	Percent
30074	Float	Drive Motor Current W RLA Circuit 1	Indicates the measurement of Line 3 current at AFD for Compressor 1A in terms of % RLA	Percent
30076	Float	Drive Motor Average Current RLA Circuit 1	Indicates the average current at AFD for Compressor 1A in terms of % RLA	Percent

Modbus Register	Data Type	Object Name	Description	Units
30078	Float	Drive DC Bus Voltage Circuit 1	Indicates the voltage of the DC Bus from the AFD for Compressor 1A	Volts
30080	Float	Drive Output Power Circuit 1	Indicates the power output from the AFD for Compressor 1A	Kilowatts
30082	Float	AFD Transistor Temperature Circuit 1	Indicates the temperature of the transistor for the AFD for Compressor 1A	Degrees Fahrenheit
30084	Float	Motor Winding Temperature 1 Circuit 1	Indicates the first temperaure sensor of the windings on motor 1A	Degrees Fahrenheit
30086	Float	Motor Winding Temperature 2 Circuit 1	Indicates the second temperaure sensor of the windings on motor 1A	Degrees Fahrenheit
30088	Float	Drive Motor Average Voltage Circuit 2	Indicates the average voltage line to line at AFD for Compressor 2A	Volts
30090	Float	Drive Motor Current U Circuit 2	Indicates the measurement of Line 1 current at AFD for Compressor 2A in terms of Amps	Amps
30092	Float	Drive Motor Current V Circuit 2	Indicates the measurement of V line current at AFD for Compressor 2A in terms of Amps	Amps
30094	Float	Drive Motor Current W Circuit 2	Indicates the measurement of W line current at AFD for Compressor 2A in terms of Amps	Amps
30096	Float	Drive Motor Current U RLA Circuit 2	Indicates the measurement of Line 1 current at AFD for Compressor 2A in terms of % RLA	Percent
30098	Float	Drive Motor Current V RLA Circuit 2	Indicates the measurement of Line 2 current at AFD for Compressor 2A in terms of % RLA	Percent
30100	Float	Drive Motor Current W RLA Circuit 2	Indicates the measurement of Line 3 current at AFD for Compressor 2A in terms of % RLA	Percent
30102	Float	Drive Motor Average Current RLA Circuit 2	Indicates the average current at AFD for Compressor 2A in terms of % RLA	Percent
30104	Float	Drive DC Bus Voltage Circuit 2	Indicates the voltage of the DC Bus from the AFD for Compressor 2A	Volts
30106	Float	Drive Output Power Circuit 2	Indicates the power output from the AFD for Compressor 2A	Kilowatts
30108	Float	AFD Transistor Temperature Circuit 2	Indicates the temperature of the transidtor for the AFD for Compressor 2A	Degrees Fahrenheit
30110	Float	Motor Winding Temperature 1 Circuit 2	Indicates the first temperaure sensor of the windings on motor 2A	Degrees Fahrenheit
30112	Float	Motor Winding Temperature 2 Circuit 2	Indicates the second temperaure sensor of the windings on motor 2A	Degrees Fahrenheit
30114	Float	Sub Cooled Liquid Temperature Circuit 1	Indicates the sub cooled liquid temperature of circuit 1	Degrees Fahrenheit
30116	Float	Sub Cooled Liquid Temperature Circuit 2	Indicates the sub cooled liquid temperature of circuit 2	Degrees Fahrenheit
30118	Float	Evaporator Differential Water Pressure	Indicates the differential water pressure of the evaporator	Pound Force per Square Inch
30120	Float	System Chilled Water Differential Pressure	Indicates the differential water pressure of the chilled water system	Pound Force per Square Inch
30126	Float	Phase AB Voltage - Compressor 1B	Indicates the measurement of voltage in Phase AB for Compressor 1B	Volts
30128	Float	Line 1 Current - Compressor 1B	Indicates the measurement of Line 1 current for Compressor 1B in terms of Amps	Amps
30130	Float	Line 2 Current - Compressor 1B	Indicates the measurement of Line 2 current for Compressor 1B in terms of Amps	Amps
30132	Float	Line 3 Current - Compressor 1B	Indicates the measurement of Line 3 current for Compressor 1B in terms of Amps	Amps
30134	Float	Line 1 Current RLA - Compressor 1B	Indicates the measurement of Line 1 current for Compressor 1B in terms of % RLA	Percent
30136	Float	Line 2 Current RLA - Compressor 1B	Indicates the measurement of Line 2 current for Compressor 1B in terms of % RLA	Percent
30138	Float	Line 3 Current RLA - Compressor 1B	Indicates the measurement of Line 3 current for Compressor 1B in terms of % RLA	Percent
30140	Float	Phase AB Voltage - Compressor 2B	Indicates the measurement of voltage in Phase AB for Compressor 2B	Volts
30142	Float	Line 1 Current - Compressor 2B	Indicates the measurement of Line 1 current for Compressor 2B in terms of Amps	Amps
30144	Float	Line 2 Current - Compressor 2B	Indicates the measurement of Line 2 current for Compressor 2B in terms of Amps	Amps
30146	Float	Line 3 Current - Compressor 2B	Indicates the measurement of Line 3 current for Compressor 2B in terms of Amps	Amps
30148	Float	Line 1 Current RLA - Compressor 2B	Indicates the measurement of Line 1 current for Compressor 2B in terms of % RLA	Percent

Table 19. ACRB 350–500 tons analog inputs (continued)

Modbus Register	Data Type	Object Name	Description	Units
30150	Float	Line 2 Current RLA - Compressor 2B	Indicates the measurement of Line 2 current for Compressor 2B in terms of % RLA	Percent
30152	Float	Line 3 Current RLA - Compressor 2B	Indicates the measurement of Line 3 current for Compressor 2B in terms of % RLA	Percent
30156	Float	Refrigerant Discharge Temperature - Compressor 1B	Indicates the current temperature of the refrigerant being discharged from Compressor 1B	Degrees Fahrenheit
30158	Float	High Side Oil Pressure - Compressor 1B	Indicates the pressure of the oil on the high pressure side of Compressor 1B	Pound Force per Square Inch
30160	Float	Refrigerant Discharge Temperature - Compressor 2B	Indicates the current temperature of the refrigerant being discharged from Compressor 2B	Degrees Fahrenheit
30162	Float	High Side Oil Pressure - Compressor 2B	Indicates the pressure of the oil on the high pressure side of Compressor 2B	Pound Force per Square Inch
30164	Float	Number of Circuits	Indicates the number of refrigeration circuits in the chiller	No Units
30166	Float	Number of Compressors Circuit 1	Indicates the number of compressors on circuit 1 of the chiller	No Units
30168	Float	Number of Compressors Circuit 2	Indicates the number of compressors on circuit 2 of the chiller	No Units
30170	Float	Actual Running Capacity	Indicates the measurement of the power being consumed by the Chiller	Percent
30172	Float	Free Cooling Capacity Status	Indicates the % capacity of the free cooling being used	Percent
30174	Float	Free Cooling Entering Water Temperature Active	Indiactes the entering water temperature of the free cooling circuit	Degrees Fahrenheit
30180	Float	Setpoint Status	Indicates the setpoint status of the evaporator differential water pressure	Pound Force per Square Inch
30182	Float	Energy Consumption Lifetime	Indicates the total energy consumption of the chiller (for the lifetime of the chiller) Indicates the total energy consumption of the	Kilowatts hour
30184	Float	Energy Consumption	chiller (since last accumulation reset)	Kilowatts hour
30186	Float	Starts - Compressor 1A	Indicates the number of starts of Compressor 1A	No Units
30188	Float	Run Time - Compressor 1A	Indicates the run time of Compressor 1A	No Units
30190	Float	Starts - Compressor 2A	Indicates the number of starts of Compressor 2A	No Units
30192	Float	Run Time - Compressor 2A	Indicates the run time of Compressor 2A	No Units
30194	Float	Starts - Compressor 1B	Indicates the number of starts of Compressor 1B	No Units
30196	Float	Run Time - Compressor 1B	Indicates the run time of Compressor 1B	No Units
30198	Float	Starts - Compressor 2B	Indicates the number of starts of Compressor 2B	No Units
30200	Float	Run Time - Compressor 2B	Indicates the run time of Compressor 2B	No Units
30202	Float	Chiller Design Capacity	Indicates the design capacity of chilller	Tons of Refrigeration
30206	Float	Chilled Water Setpoint Status	Indicates the chilled water setpoint temperature	Degrees Fahrenhei
30208	Float	Demand Limit Setpoint Status	Indacates the % capacity of the demand limit being used	Percent
30210	Float	Unit Source ID	Indicates the last diagnostic of the chiller Separately, individual diagnostics are reported with dedicated points, variables, registers	No Units
30212	Float	Drive Input Voltage Calculated 1A	Indicates the input voltage at the AFD for Compressor 1A	Volts
30214	Float	Drive Input Voltage Calculated 2A	Indicates the input voltage at the AFD for Compressor 2A	Volts
30216	Float	Active Cool/Heat Setpoint Temperature	Indicates the value of the active Chilled Water Setpoint actively being used by the chiller	Degrees Fahrenheit
30218	Float	Phase BC Voltage - Compressor 1B	Indicates the measurement of voltage in Phase BC for Compressor 1B	Volts
30220	Float	Phase CA Voltage - Compressor 1B	Indicates the measurement of voltage in Phase CA for Compressor 1B	Volts
30222	Float	Phase BC Voltage - Compressor 2B	Indicates the measurement of voltage in Phase BC for Compressor 2B	Volts
30224	Float	Phase CA Voltage - Compressor 2B	Indicates the measurement of voltage in Phase CA for Compressor 2B	Volts

Table 19.	ACRB 350–500 tons analog inputs (continued)
14610 101	, tonib ooo tonic analog inpute (continuou,

Modbus Register	Data Type	Object Name	Description	Units
30226	Float	Average Line Current Circuit 1	Indicates the average current, reported in Circuit 1	Amps
30228	Float	Average Line Current Circuit 2	Indicates the average current, reported in Circuit 2	Amps
30230	Float	Average Line Voltage Circuit 1	Indicates the average voltage, line-to-line reported in Circuit 1	Volts
30232	Float	Average Line Voltage Circuit 2	Indicates the average voltage, line-to-line reported in Circuit 2	Volts
30234	Float	Line Current L1 Circuit 1	Indicates the current for line/leg 1 of Circuit 1	Amps
30236	Float	Line Current L2 Circuit 1	Indicates the current for line/leg 2 of Circuit 1	Amps
30238	Float	Line Current L3 Circuit 1	Indicates the current for line/leg 3 of Circuit 1	Amps
30240	Float	Line Current L1 Circuit 2	Indicates the current for line/leg 1 of Circuit 2	Amps
30242	Float	Line Current L2 Circuit 2	Indicates the current for line/leg 2 of Circuit 2	Amps
30244	Float	Line Current L3 Circuit 2	Indicates the current for line/leg 3 of Circuit 2	Amps
30246	Float	Voltage L1-L2 Circuit 1	Indicates the voltage between line/leg L1 and L2 of Circuit 1 Indicates the voltage between line/leg L2 and	Volts
30248	Float	Voltage L2-L3 Circuit 1	L3 of Circuit 1	Volts
30250	Float	Voltage L1-L3 Circuit 1	Indicates the voltage between line/leg L1 and L3 of Circuit 1 Indicates the voltage between line/leg L1 and	Volts
30252	Float	Voltage L1-L2 Circuit 2	L2 of Circuit 2	Volts
30254	Float	Voltage L2-L1 Circuit 2	Indicates the voltage between line/leg L2 and L3 of Circuit 2 Indicates the voltage between line/leg L1 and	Volts
30256	Float	Voltage L1-L3 Circuit 2	Indicates the voltage between line/leg L1 and L3 of Circuit 2	Volts
30258	Float	Total Real Power	Indicates the total real power reported	Kilowatts
30260	Float	Line Frequency Circuit 1	Indicates the estimated input frequency for Circuit 1	No Units
30262	Float	Line Frequency Circuit 2	Indicates the estimated input frequency for Circuit 2	No Units
30264	Float	Power Factor Circuit 1	Indicates the reported power factor for Circuit 1	No Units
30266	Float	Power Factor Circuit 2	Indicates the reported power factor for Circuit	No Units
30268	Float	Power Demand Circuit 1	Indicates the reported power demand for Circuit 1	Kilowatts
30270	Float	Power Demand Circuit 2	Indicates the reported power demand for Circuit 2	Kilowatts

Table 19. ACRB 350–500 tons analog inputs (continued)

Table 20. ACRB 350–500 tons analog values

Modbus Register	Data Type	Object Name	Description	Units
40010	Float	Chilled Water Setpoint	The value is normally provided by the BAS to send the Chilled Water Setpoint. The value is subject to arbitration logic in the controller, in which case it may or may not be used for control purposes	Degrees Fahrenheit
40012	Float	Demand Limit Setpoint	The value is normally provided by the BAS to send the Demand Limit Setpoint. The value is subject to arbitration logic in the controller, in which case it may or may not be used for control purposes	Percent

Table 21. ACRB 350–500 tons binary inputs

Modbus Register	Data Type	Object Name	Description	Object States
33010	Signed Integer 16-bit	Run Enable	Indicates that chiller is available to run or is currently running	0 = Run Not Enabled 1 = Run Enabled
33011	Signed Integer 16-bit	Local Setpoint Control	Indicates the which setpoint is used for control purposes, Remote (BAS) or Local	0 = Remote control 1 = Local control
33012	Signed Integer 16-bit	Limit Mode Relay Status	Indicates the status of the chiller limit relay	0 = Off 1 = On
33013	Signed Integer 16-bit	Chiller Running State	Indicates whether the chiller is on (currently doing either cooling) or is considered off(not currently doing cooling)	0 = Off 1 = On

Modbus Register	Data Type	Object Name	Description	Object States
33014	Signed Integer 16-bit	Maximum Capacity	Indicates the status of the maximum capacity relay	0 = Off 1 = On
33016	Signed Integer 16-bit	Manual Override Exists	Indicated a manual override is present	0 = Off 1 = On
33017	Signed Integer 16-bit	Compressor 1A Status	Indicates running state fo Compressor 1A	0 = Off 1 = Running
33018	Signed Integer 16-bit	Compressor 2A Status	Indicates running state fo Compressor 2A	0 = Off 1 = Running
33019	Signed Integer 16-bit	Emergency Stop	Indicates the status of the emergency stop function of the chiller	0 = Auto 1 = Emergency Stop - Manual Reset Required
33020	Signed Integer 16-bit	Evaporator Water Pump Request	Indicates a request from the chiller to turn on the Evaporator Water Pump	0 = Off 1 = On
33021	Signed Integer 16-bit	Evaporator Water Flow Status	Indicates the flow of water through evaporator	0 = No Flow 1 = Flow
33022	Signed Integer 16-bit	Compressor 1B Status	Indicates running state of Compressor 1B	0 = Off 1 = Running
33023	Signed Integer 16-bit	Compressor 2B Status	Indicates running state of Compressor 2B	0 = Off 1 = Running
33024	Signed Integer 16-bit	Free Cooling Active	Indicated the free cooling mode is active	0 = Inactive 1 = Active
33026	Signed Integer 16-bit	Diagnostic Present	Indicates whether diagnostic present	0 = Normal 1 = In Alarm
33027	Signed Integer 16-bit	Diagnostic Shutdown Present	Indicates chiller is shut down due to diagnostics	0 = Normal 1 = In Alarm
33028	Signed Integer 16-bit	Diagnostic: Manual Reset Required	Indicates when a diagnostic exists that requires manual reset	0 = Normal 1 = In Alarm
33029	Signed Integer 16-bit	Diagnostic: Local Manual Reset Required	Indicates when a diagnostic exists that requires manual reset [Local only]	0 = Normal 1 = In Alarm
33030	Signed Integer 16-bit	Diagnostic Present: Information	Indicates whether diagnostic present with Information Category	0 = Normal 1 = In Alarm
33031	Signed Integer 16-bit	Diagnostic Present: Advisory	Indicates whether diagnostic present with Warning Category	0 = Normal 1 = In Alarm
33032	Signed Integer 16-bit	Diagnostic Present: Critical	Indicates whether diagnostic present with Critical Category	0 = Normal 1 = In Alarm
33033	Signed Integer 16-bit	Diagnostic Present: Service Required	Indicates whether diagnostic present with Service Required Category	0 = Normal 1 = In Alarm
33034	Signed Integer 16-bit	External Auto Stop Input Status	Indicates the status of the externally-wired auto/ stop input	0 = Stop 1 = Auto
33035	Signed Integer 16-bit	Front Panel Auto Stop	Indicates the auto/stop status of the Front Panel	0 = Stop 1 = Auto
33036	Signed Integer 16-bit	Noise Reduction Request Active	Indicates wherther Noise Reduction active	0 = Off 1 = On
33037	Signed Integer 16-bit	Circuit 1 Lockout Front Panel	Indicates the lockout state of Circuit 1 Comprosser from Front Panel	0 = Normal 1 = Locked Out
33038	Signed Integer 16-bit	Circuit 2 Lockout Front Panel	Indicates the lockout state of Circuit 2 Comprosser from Front Panel	0 = Normal 1 = Locked Out
33039	Signed Integer 16-bit	Circuit 1 Lockout External	Indicates the lockout state of Circuit 1 Comprosser from External	0 = Normal 1 = Locked Out
33040	Signed Integer 16-bit	Circuit 2 Lockout External	Indicates the lockout state of Circuit 2 Comprosser from External	0 = Normal 1 = Locked Out
33041	Signed Integer 16-bit	Circuit 1 Lockout Active	Indicates the lockout state of Circuit 1 Comprosser	0 = Normal 1 = Locked Out
33042	Signed Integer 16-bit	Circuit 2 Lockout Active	Indicates the lockout state of Circuit 2 Comprosser	0 = Normal 1 = Locked Out

Table 21. ACRB 350–500 tons binary inputs (continued)

Table 22. ACRB 350–500 tons binary value

Modbus Register	Data Type	Object Name	Description	Object States
43010	Signed Integer 16-bit	Reset Diagnostic	Normally used by the BMS to initiate a request to reset any controller diagnostics	0 = Normal 1 = Reset
43011	Signed Integer 16-bit	Noise Reduction Request BAS	Normally used by the BMS to command the chiller to enter a mode of operation where the noise of the unit is reduced	0 = Normal 1 = Reduce Noise
43012	Signed Integer 16-bit	Circuit 1 Lockout BAS	Normally used by the BMS to lockout the Circuit-1 Compressor	0 = Normal 1 = Locked Out

Modbus Register	Data Type	Object Name	Description	Object States
43013	Signed Integer 16-bit	Circuit 2 Lockout BAS	Normally used by the BMS to lockout the Circuit-2 Compressor	0 = Normal 1 = Locked Out
43017	Signed Integer 16-bit	Energy Consumption Reset	Normally used by the BMS to reset the energy consumption accumulated total	0 = Accumulat- ing 1 = Reset
43018	Signed Integer 16-bit	Chiller Auto Stop Command BAS	Normally used by the BMS to command the chiller to start running if operating conditions are satisfied, or to stop the chiller from running.	0 = Stop 1 = Auto
43019	Signed Integer 16-bit	Free Cooling Auto Stop Command BAS	Normally used the BMS to command the chiller to allow free cooling mode if conditions are satisfied, or to stop the free cooling mode from operating.	0 = Stop 1 = Auto
43020	Signed Integer 16-bit	Free Cooling Compressor Lockout	Normally used by the BMS to lockout the Compressor while in free cooling mode	0 = Normal 1 = Locked Out

Table 22. ACRB 350–500 tons binary value (continued)

Table 23. ACRB 350–500 tons multi-state inputs

Modbus Register	Data Type	Object Name	Description	Object States
32010	Unsigned Integer 16-bit	Running Mode	Indicates the operating mode of the chiller	1 = Cool 2 = Heat 3= Ice Making 4= Free Cooling
32011	Unsigned Integer 16-bit	Operating Mode	Indicates the chiller refrigerant type	1 = R-11 2 = R-12 3 = R-22 4 = R-123 5 = R-134a 6 = R-407C 7 = R-410A 8 = R-113 9 = R-114 10 = R-500 11 = R-502 12 = R-404A 13 = R-513A 14 = R-1233zd(E) 15 = R-514A 16 = R-1234ze(E)
32012	Unsigned Integer 16-bit	Refrigerant Type	Indicates the cooling Type of chiller	1 = Water Cooled 2 = Air Cooled
32013	Unsigned Integer 16-bit	Cooling Type	Indicates the location that the chiller was manufactured	1 = Field Applied $2 = La Crosse$ $3 = Pueblo$ $4 = Charmes$ $5 = Rushville$ $6 = Macon$ $7 = Waco$ $8 = Lexington$ $9 = Forsyth$ $10 = Clarksville$ $11 = Ft. Smith$ $12 = Penang$ $13 = Colchester$ $14 = Curitiba$ $15 = Taicang$ $16 = Taiwan$ $17 = Epinal$ $18 = Golbey$

Modbus Register	Data Type	Object Name	Description	Object States
32014	Unsigned Integer 16-bit	Manufacture Location	Indicates the model information of chiller	$\begin{array}{c} 1 = {\rm CVHF} \\ 2 = {\rm CVFG} \\ 3 = {\rm CVHS} \\ 4 = {\rm RTAF} \\ 6 = {\rm RTAF} \\ 6 = {\rm RTHA} \\ 7 = {\rm RTHB} \\ 8 = {\rm RTHC} \\ 9 = {\rm RTHD} \\ 10 = {\rm RTWE} \\ 11 = {\rm CTVD} \\ 12 = {\rm CVR} \\ 13 = {\rm CVHH} \\ 14 = {\rm CDHH} \\ 15 = {\rm VMAX} \\ 16 = {\rm GVAF} \\ 17 = {\rm RTWF} \\ 18 = {\rm RTHF} \\ 19 = {\rm RTAG} \\ 20 = {\rm CVHM} \\ 21 = {\rm RTAG} \\ 22 = {\rm CGAF} \\ 23 = {\rm RTXG} \\ 24 = {\rm GVWF} \\ 25 = {\rm HDWA} \\ 26 = {\rm CMAC} \\ 27 = {\rm IPAK} \\ 28 = {\rm CXAF} \\ 29 = {\rm ACSA} \\ 30 = {\rm RTSF} \\ 31 = {\rm HSWA} \\ 32 = {\rm ACRA} \\ 33 = {\rm RTEG} \\ 34 = {\rm ACRA} \\ 35 = {\rm CMB} \\ {\rm Large} \\ 37 = {\rm ACRB} \\ {\rm Small} \end{array}$
32015	Unsigned Integer 16-bit	Model Information [GEN2]		1 = BAS 2 = External 3 = Front Panel
32016	Unsigned Integer 16-bit	Chiller Setpoint Source	Indicates the selected setpoint source for control purpose	1 = BAS 2 = External 3 = Front Panel

Table 23.	ACRB 350–500 tons multi-state inputs (continued)
-----------	--

 Table 24.
 ACRB 350–500 tons multi-state values

Modbus Register	Data Type	Object Name	Description	Object States
42010	Unsigned Integer 16-bit	Chiller Mode Command BAS	Normally used by the BMS to command the chiller Mode	1 = Cool 2 = Heat 3= Ice Making 4= Free Cooling

Recycled Points

The Symbio[™] 800 controller ships from the factory pre-configured for the specific unit application. The points of the communicated interface (BACnet, Modbus, or LonTalk) vary based on the unit configuration. Only those points pertinent to that configuration are included in the interface.

Example: When the unit is configured for only two compressors, any points associated with compressors three and four are not be displayed on the Touch Screen interface or browserbased Web user interface. When configuration changes are made in the field, the points in the communication interface change accordingly to align with those features or user-added points.

Figure 22. Points

2019 Trane Tryndier" 800 - v1.20.0013 (release) - WebUI 123

7764ME [®] Symbio 80	h		😩 😪 Favorites 🟫 Home 🛕 Alarms 🤽 Admin
oplications * iummary ilarms	Points Analog Points Bleary Points Multistate Points	Recycled Points	
ata Logs	Binary Inputs Binary Outputs Binary Values		
Points			
chedules	. Name	Description	Value
larm Configuration	Condensate Overflow Input	Indicates the status of the condensate overflow input	Normal
alot	Diagnostic Present	Olagnostic Present	In Alarm
nstallation	Timed Override Timer Is Active	Indicates whether or not the timed override timer is active	Inactive
	FDD: Outdoor Air Damper Not Modulating	FDD: Indicates when the outdoor air damper is not modulating but should be	Inactive
	Occupancy Input	Indicates the status of the occupancy input	Occupied
	Condenser Fan Circuit 1 Relay 1 Status	Indicates the status of condenser fan circuit 1, relay 1	on
	Diagnostic: Condensate Overflow Lockout	Indicates when a condensate overflow lockout diagnostic is present	Mes.
	Unit Running State	Indicates whether the unit is off or on	or
	Emergency Stop	Indicates the status of the emergency stop function of the unit	Auto
	Supply Fan Speed Limited	Supply fan speed is being increased or decreased due to a limit control action	Limited 5
	Supply Fan Output Status	Indicates the status of the supply fan output of the controller	off
	FQD: Outdoor Air Temperature Sensor Failure	FDD: Indicates when the outdoor air temperature sensor has failed	Active
	C Economizer Ainside Status	Indicates the status of airside economizing	Inactive
	Compressor 18 Status	Indicates the operating status of compressor 1B	or
	Coll Frost Protection Status Circuit 1	Indicates the status of evaporator frost protection function for circuit 1	Inactive

Apr 22, 2022 05:41 84

Any of the factory-provided points can be removed from the communication interface through a feature known as recycling. When the user selects and deletes a factory point, that point is moved to Recycled Points and is removed from the interface. This feature offers technicians the ability to strategically provide only those interface points desired for a specific project or installation.

To remove a point from the interface:

- 1. On the left-hand navigation, select **Points**.
- 2. Each of the points are grouped by their native type (analog, binary or multi-state), and input, output, or value. Select the appropriate group at the top of the page.
- 3. Select one or more points from the list and select Actions... | Delete.

Figure 23. Delete points

lications 🔻	NOV SHOT		
	Points		
nmary.	Analog Points Binary Points Multistate Points	Recycled Points	
rms	Binary Inputs Binary Outputs Binary Values		
ta Logs Ints	Actions *		
	Log Data	Description	Value
vedules	Condensate Overflow Input	Indicates the status of the condensate overflow input	Normal
rm Configuration			
dis	(2) Diagnostic Present	Diagnostic Present	In Alarm
tallation	Timed Override Timer Is Active	Indicates whether or not the timed override timer is active	Inactive
	E FDD: Outdoor Air Damper Not Modulating	FDD: Indicates when the outdoor air damper is not modulating but should be	Inactive
	Occupancy Input	Indicates the status of the occupancy input	Occupied
	Condenser Fan Circuit 1 Relay 1 Status	Indicates the status of condenser fan circuit 1, relay 1	on
	Diagnostic: Condensate Overflow Lockout	Indicates when a condensate overflow lockout diagnostic is present	No
	😧 Unit Running State	Indicates whether the unit is off or an	08
	Emergency Stop	Indicates the status of the emergency stop function of the unit	Auto
	Supply Fan Speed Limited	Supply fan speed is being increased or decreased due to a limit control action	Limited
	Supply Fan Output Status	Indicates the status of the supply fan output of the controller	n
	FQD: Outdoor Air Temperature Sensor Fallure	FDD: Indicates when the outdoor air temperature sensor has failed	Active
	Economizer Ainlide Status	Indicates the status of airside economizing	Inactive
	Compressor 1B Status	Indicates the operating status of compressor 1B	off
	Coll Frost Protection Status Circuit 1	Indicates the status of evaporator frost protection function for circuit 1	Inactive

Note: User-created points cannot be recycled. Instead, when the user selects and deletes usercreated points, those points are permanently removed from the controller. Should the user decide later that one or more of the deleted user points are needed, they will need to be recreated.

To restore recycled points:

- 1. Navigate to the **Recycled Points** tab on the Points page.
- 2. Select one or more points to be restored, then click **Restore**.
- 3. Once the restore process is complete, the restored points are moved back to the appropriate tab depending on point type. The recycled points also appear in the communicated interface once they are restored.

Figure 24. Recycled points tab

cations 🔻	Points			
mary.				
ns		ate Points Recycled Points		
Logs	Restore			
ts	D Point Type	Instance	Name	
dules -	Binary Input	10140	Unit Running State	
n Configuration	Binary Input	10176	Diagnostic Present	
llation	Binary Input	10614	Diagnostic: Condensate Overflow Lockout	
macion				
10				
0				
0				
10				
103				
100				
G				
0				
G				
10				

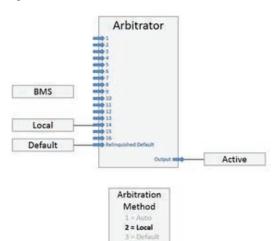
BAS-SVP045B-EN

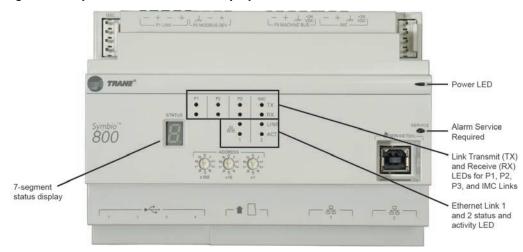
Appendix A. Arbitration

The Symbio[™] 800 controller includes arbitration logic for several points. For each read/write point designated as "BAS", an associated "Arbitration" point determines the behavior of that communicated data compared to the local hardwired (or wireless) sensor and a default value.

As shown in Figure 25, p. A–1, the arbitrator considers all possible sources of the provided data, including Building Management Systems (BMS), local, and default. Each potential source is defined at a pre-determined, fixed priority. When the arbitration method is selected as full/auto, the BMS value is used instead of the local or default values.


The point designator with the arbitrator suffix includes the full priority array, allowing the user to see the value associated with all potential sources considered in the logic. The active point reflects the result of the arbitration logic.


Because the arbitrated points are normally associated with sensors, the default value is invalid, meaning the value must be provided either by the BMS or the local sensor.


When the Arbitration Method is selected as local, the BMS value is ignored and local value is used instead. Though the arbitration logic still considers all inputs, any values sent by the BMS are effectively ignored.

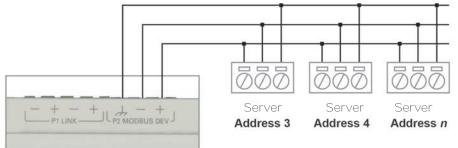
Appendix B. Symbio[™] 800 Controller Display

Figure 27. Symbio[™] 800 controller display and LEDs

7-Segment status display

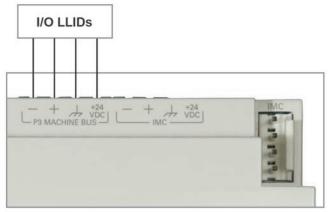
Table 25. Codes for 7-segment display segment

Code	Description
U0.	Waiting for USB drives to mount
U2.	Checking signature on the .scfw file
U3.	Checking software maintenance plan
U4.	Reformatting main filesystem (clearing database)
U5.	Beginning update
U12.	Searching for .scfw files on USB drive(s)
U51.	Updating main firmware
U54.	Updating FPGA image
U55.	Updating U-boot image
U57.	Updating recovery partition


Note: A code starting with an "F" indicates a failure, and requires Trane Service to resolve the issue.

P1 Link – BACnet TP or Modbus RTU

- RS-485 daisy chain
- Used for connection to a primary controller


Figure 28. P2 Modbus device (factory installed Modbus server devices)

Note: The P2 link is intended for factory devices only and should not have any other devices added this link.

Figure 29. P3 machine bus (global bus - internal communication bus)

Note: The P3 link is intended for factory devices only and should not have any other devices added this link.

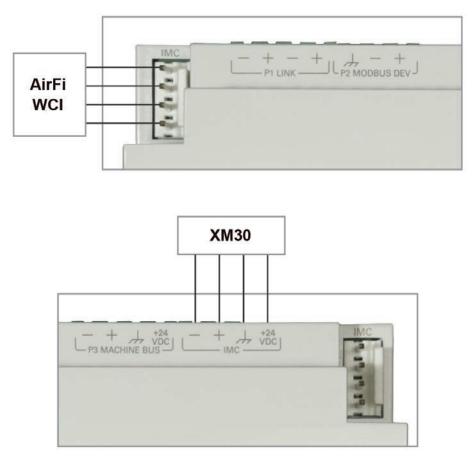
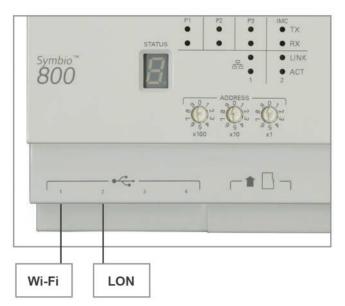



Figure 30. IMC link terminations for optional Air-Fi and expansion module (XM30)

For more information on Expansion Module wiring reference BAS-SVX46* – Expansion Module Installation Operation and Maintenance Manual.

Figure 31. (4) USB connectors

The controller automatically detects devices on any of the ports (not port specific). The controller ships with all ports enabled, but they can be disabled via the Web interface.

Note: The USB ports are not to be used for any devices that are not Trane approved, such as cellular phones.

Figure 32. Ethernet port 2

Note: Ethernet Port 2 is for use with the Touch Screen display only. Communication to other devices is not supported.

Trane - by Trane Technologies (NYSE: TT), a global innovator - creates comfortable, energy efficient indoor environments for commercial and residential applications. For more information, please visit trane.com or tranetechnologies.com.

Trane has a policy of continuous product and product data improvements and reserves the right to change design and specifications without notice. We are committed to using environmentally conscious print practices.