Trane Engineers Newsletter Live Series: High-Performance VAV Systems

Title	Abstract
High-Performance VAV Systems	Variable-air-volume (VAV) systems have been used to provide comfort in a wide range of building types and climates. This ENL will discuss design and control strategies that can significantly reduce energy use and ensure proper ventilation in VAV systems. Topics will likely include: ventilation system design and control, optimized VAV system controls, cold air distribution, and other energy-saving strategies.

Presenters: John Murphy, Dennis Stanke

Viewer learning objectives:

- 1. Identify ASHRAE Standard 189.1 requirements for VAV systems
- 2. Summarize how to properly apply air-to-air energy recovery in a VAV system
- 3. Summarize how to implement optimized VAV system control strategies
- 4. Summarize how to design and control cold-air VAV systems

Outline:

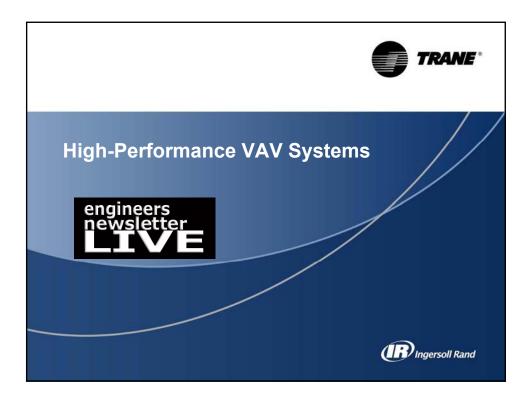
- 1) Opening (welcome, agenda, introductions)
- 2) What does ASHRAE 189.1 (or the IGCC) require for a VAV system?
- 3) Optimized VAV system controls
 - a) Optimal start/Optimal stop
 - b) Fan-pressure optimization
 - c) Supply-air-temperature reset
 - i) Benefits vs. drawbacks, examples
 - d) Ventilation optimization
 - e) Energy modeling results of optimized VAV system controls
- 4) Cold-air distribution
 - a) Benefits
 - Tips to maximize energy savings (lower CHW temperatures, more latent cooling, increases reheat energy due to less VAV turndown, fewer economizing hours)
 - c) Minimizing comfort problems due to cold air "dumping"
 - d) Avoiding condensation on air distribution system components (ductwork, diffusers)
- 5) Air-to-air energy recovery
 - a) Sensible vs. total (enthalpy) energy recovery
 - b) Benefits and drawbacks
- 6) List of other energy-saving strategies (RTVAV and CHWVAV)
- 7) Share results of example energy modeling analyses
- 8) Closing

Presenter Biographies

June 2011

High-Performance VAV Systems

John Murphy, LEED® AP | senior application engineer | Trane


John has been with Trane since 1993. His primary responsibility as an applications engineer is to aid design engineers and Trane sales personnel in the proper design and application of HVAC systems. As a LEED Accredited Professional, he has helped our customers and local offices on a wide range of LEED projects. His main areas of expertise include energy efficiency, dehumidification, air-to-air energy recovery, psychrometry, ventilation, and ASHRAE Standards 15, 62.1, and 90.1.

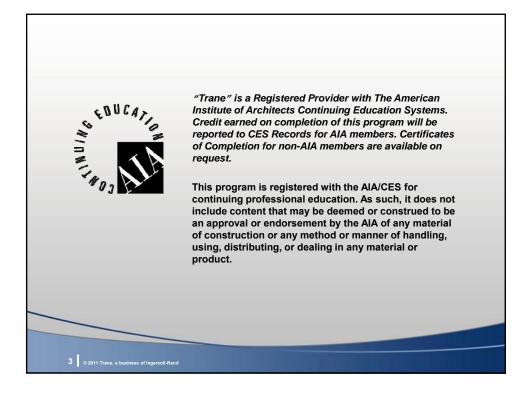
John is the author of numerous Trane application manuals and *Engineers Newsletters*, and is a frequent presenter on Trane's *Engineers Newsletter Live* series of broadcasts. He also is a member of ASHRAE, has authored several articles for the *ASHRAE Journal*, and is a member of ASHRAE's "Moisture Management in Buildings" and "Mechanical Dehumidifiers" technical committees. He was a contributing author of the *Advanced Energy Design Guide for K-12 Schools* and the *Advanced Energy Design Guide for Small Hospitals and Health Care Facilities*, and technical reviewer for *The ASHRAE Guide for Buildings in Hot and Humid Climates*.

Dennis Stanke | staff application engineer | Trane

With a BSME from the University of Wisconsin, Dennis joined Trane in 1973, as a controls development engineer. He is now a Staff Applications Engineer specializing in airside systems including controls, ventilation, indoor air quality, and dehumidification. He has written numerous applications manuals and newsletters, has published many technical articles and columns, and has appeared in many Trane *Engineers Newsletter Live* broadcasts.

An ASHRAE Fellow, he currently serves as Chairman for ASHRAE Standard 189.1, *Standard for the Design of High-Performance Green Buildings Except Low-Rise Residential Buildings*. He recently served as Chairman for ASHRAE Standard 62.1, *Ventilation for Acceptable Indoor Air Quality*, and he served on the USGBC LEED Technical Advisory Group for Indoor Environmental Quality (the LEED EQ TAG).

Ingersoll Rand


is a USGBC Education Provider committed to enhancing the professional development of the building industry and LEED Professionals through high-quality continuing education programs.

As a USGBC Education Provider, we have agreed to abide by USGBC-established operational and educational criteria, and are subject to course reviews and audits for quality assurance.

High-Performance VAV Systems Course ID: 0090005954

Approved for 1.5 GBCI CE Hours for LEED Professionals.

Copyrighted Materials

This presentation is protected by U.S. and international copyright laws. Reproduction, distribution, display, and use of the presentation without written permission of Trane is prohibited.

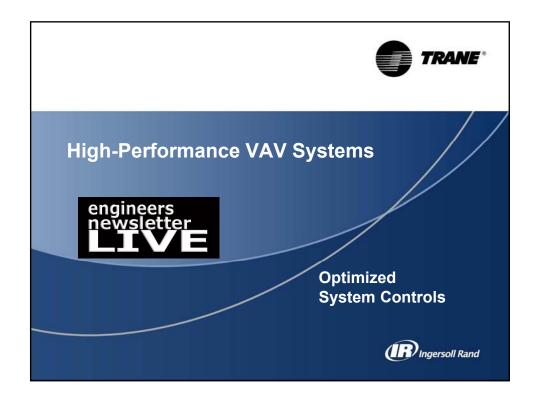
© 2011 Trane, a business of Ingersoll-Rand. All rights reserved.

High-Performance VAV Systems Today's Topics

- ASHRAE 189.1 requirements
- Optimized VAV system controls
- Cold-air distribution
- Air-to-air energy recovery
- Other energy-saving strategies
- Energy modeling results
- Summary

ASHRAE Standard 189.1-2009 Standard for the Design of What does the "high High-Performance performance green Green Buildings building" standard Except Low-Rise Residential Buildings require in a "high performance VAV system? For commercial, institutional, and hi-rise residential buildings, the standard covers ...

Std 189.1-2009 HPGB Provisions

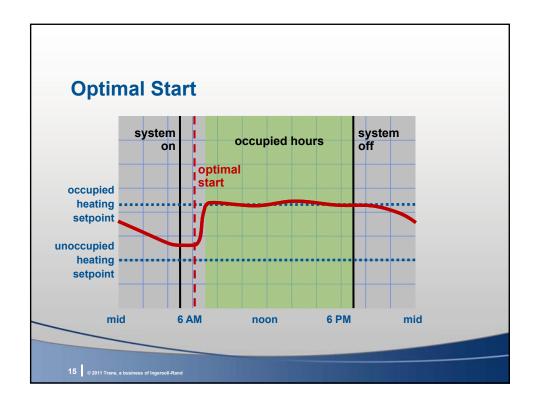

- Site sustainability: e.g., site location, heat island, rainwater
- Water use efficiency: e.g., turf, fixtures, once-through, condensate recovery
- Energy efficiency: Std 90.1 compliance plus...
- Indoor environmental quality (IEQ): e.g., Std 62.1 all sections, plus OA sensing and no smoking, Std 55 compliance, acoustics, daylighting
- Atmosphere, materials and resources: e.g., recycle, reuse, no CFC's allowed
- Construction and plans for operation

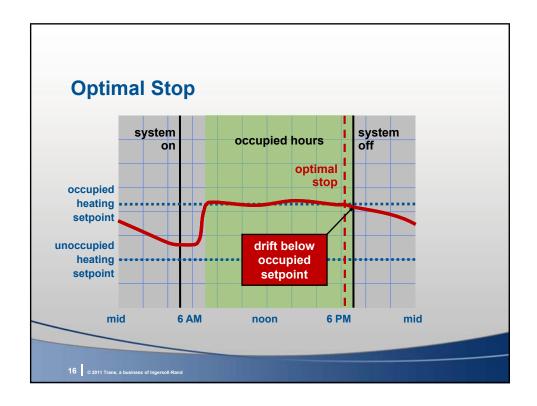
Std 189.1-2009 and high performance VAV HPGB VAV-Specific Provisions

- Optimized VAV controls
- Cold air distribution
 - Energy performance modeling shows value of HP VAV cold air distribution
- Air-to-air energy recovery

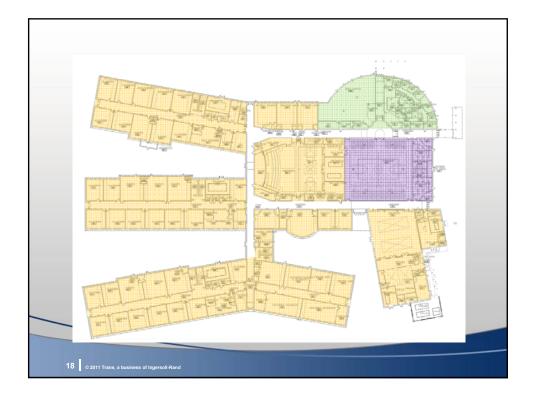
Торіс	Energy Requirements			
	Std 189.1-2009 Provisions		90.1-2010	
	90.1-2007	Plus 189.1-2009		
Optimal start/stop controls	6.4.3.3.3 Controls must automatically adjust start time for 10,000 cfm air handlers, based on space temperature, occupied setpoint and time prior to occupancy	No additional requirements (i.e., same as 90.1-2007)	Same as 189.1-2009	
Fan pressure optimization	6.5.3.2 Prescriptive option must reset supply static pressure lower to keep one zone damper nearly wide open	No additional requirements (i.e., same as 90.1-2007)	Same as 189.1-2009	
Supply air temperature reset	No mandatory or prescriptive requirements	No mandatory or prescriptive requirements	6.5.3.4 Prescriptive option must reset supply air temperature by approximately 5°F	
Demand controlled ventilation	6.4.3.9 Must use DCV in zones >500ft² with >40 people/1000 ft²	7.4.3.2 Prescriptive option must include DCV in zones >500 ft2 with ≥25 people/1000 ft²	6.4.3.9 Must use DCV in zones >500ft ² with >40 people/1000 ft ²	

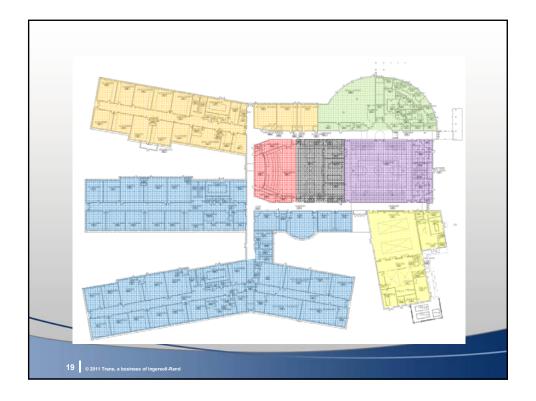
Topic	Std 189.1-2009 Provisions		90.1-2010
	90.1-2007	Plus 189.1-2009	
Ventilation reset control	No mandatory or prescriptive requirements	No mandatory or prescriptive requirements	6.5.3.3 Prescriptive option must reset VAV system OA intake based on system ventilation efficiency
Cold-air distribution	No mandatory or prescriptive requirements	No mandatory or prescriptive requirements	Same as 189.1-2009
Air-to-air energy recovery	6.5.6.1 Prescriptive option must recover enthalpy with ≥50% effectiveness in systems with ≥5000 cfm and OA ≥70% of design supply air	7.4.3.8 Prescriptive option must recover enthalpy with ≥60% effectiveness in systems ranging from 1000 to 30,000 cfm and OA ranging from 10% to 80% of design supply air	6.5.3.4 Prescriptive option must recover enthalpy with ≥50% effectiveness in systems ranging from 1000 to 26,000 cfm and OA ranging from 30% to 80% of design supply air

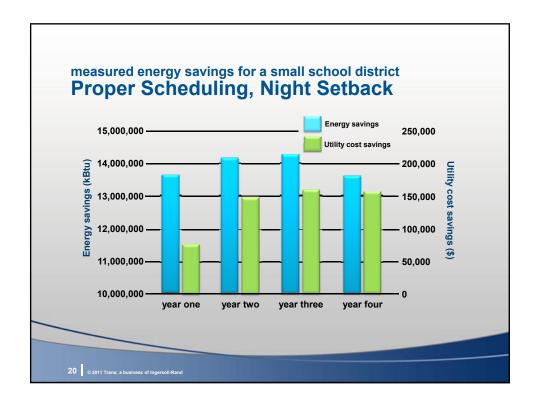

High-Performance VAV Systems Today's Topics

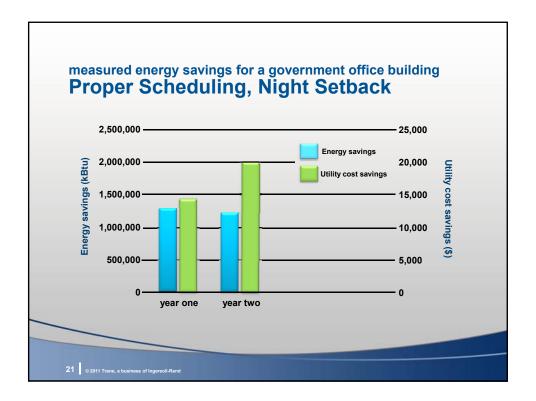

- ASHRAE 189.1 requirements
- Optimized VAV system controls
- Cold-air distribution
- Air-to-air energy recovery
- Other energy-saving strategies
- Energy modeling results
- Summary

13 © 2011 Trane, a business of Ingersoll-Rand

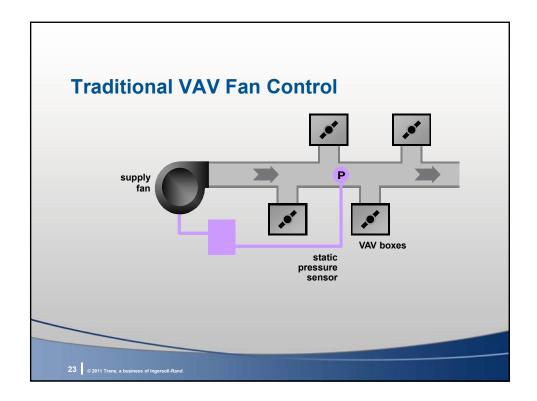

Optimized VAV System Controls

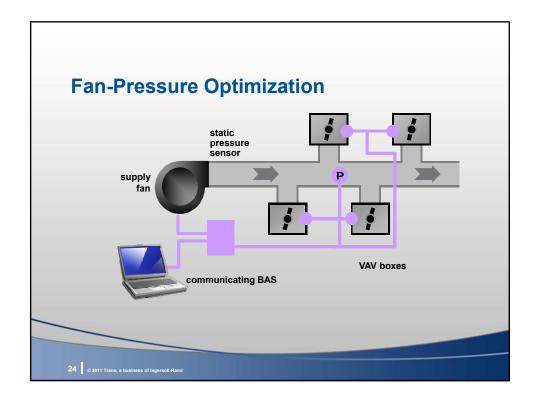

- Optimal start/stop
 - Time-of-day scheduling
- Fan-pressure optimization
- Supply-air-temperature reset
- Ventilation optimization
 - Demand-controlled ventilation (DCV) at the <u>zone</u> level
 - Ventilation reset control at the <u>system</u> level (TRAQ dampers)

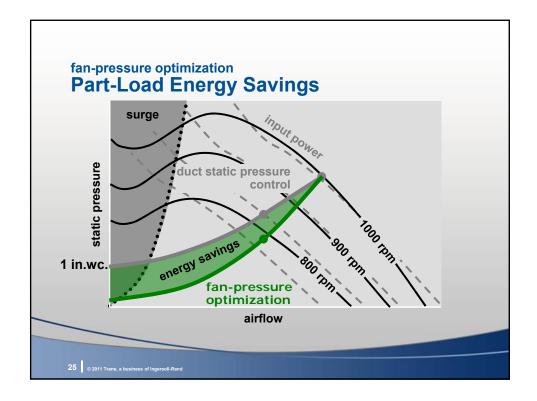


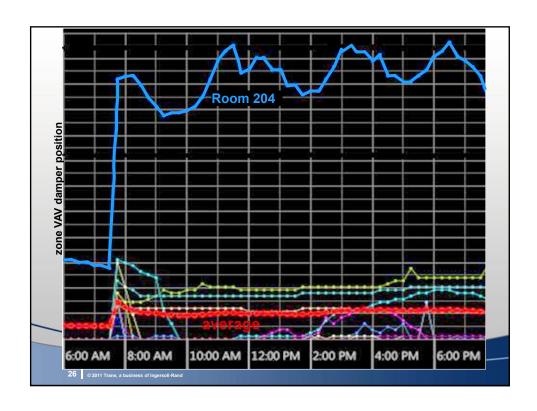


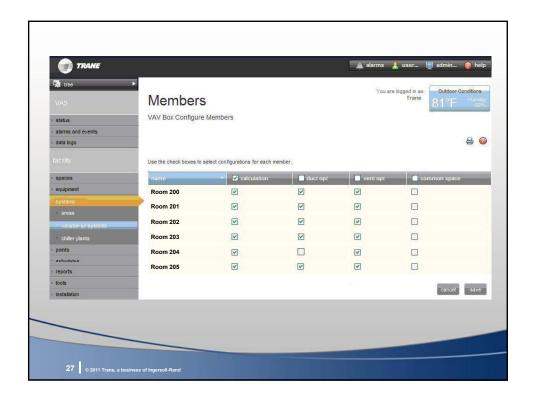
Time-of-Day Scheduling - Avoid overly-conservative scheduling by including a timed override button on zone sensors - Use separate schedules for areas with differing usage patterns

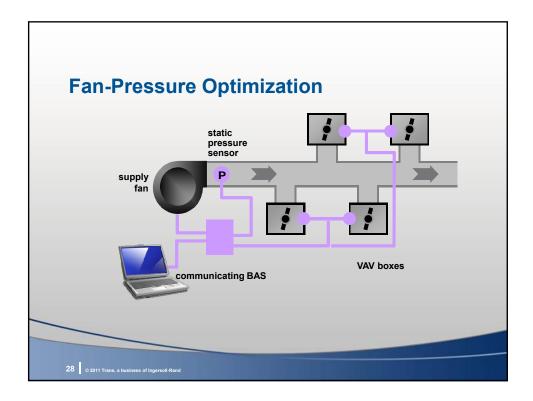





Optimized VAV System Controls

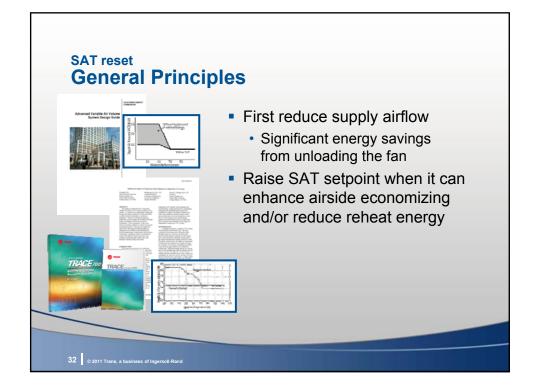

- Optimal start/stop
 - · Time-of-day scheduling
- Fan-pressure optimization
- Supply-air-temperature reset
- Ventilation optimization
 - Demand-controlled ventilation at <u>zone</u> level
 - Ventilation reset at <u>system</u> level (and TRAQ dampers)

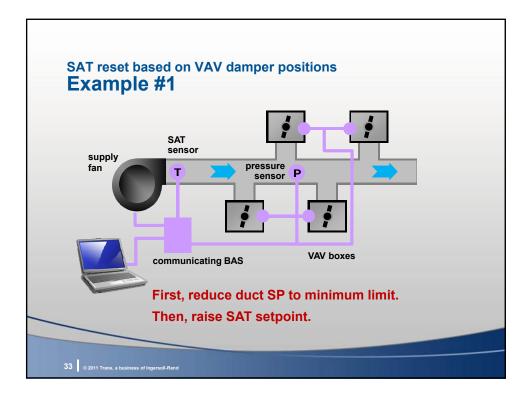

22 @ 2011 Trans a business of Innersall-Ran



fan-pressure optimization **Benefits**

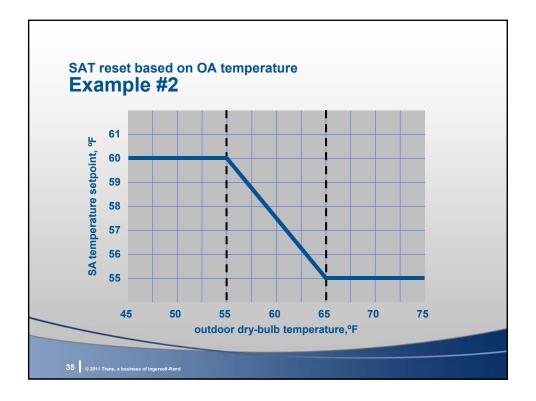
- Part-load energy savings
- Lower sound levels
- Better zone control
- Less duct leakage
- Reduced risk of fan surge
- Factory-installation and -commissioning of duct pressure sensor
- Operator feedback to "tune the system"


29 © 2011 Trane, a business of Ingersoll-Rand


Optimized VAV System Controls

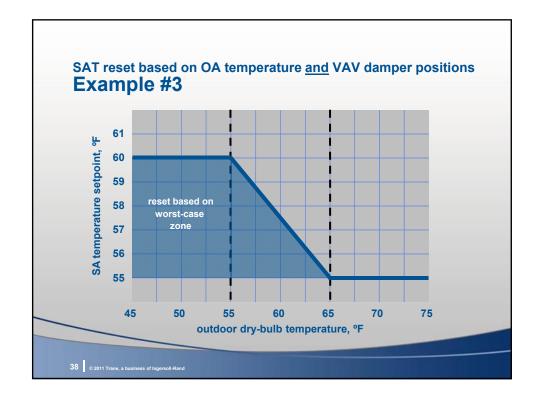
- Optimal start/stop
 - · Time-of-day scheduling
- Fan-pressure optimization
- Supply-air-temperature reset
- Ventilation optimization
 - Demand-controlled ventilation (DCV) at the <u>zone</u> level
 - Ventilation reset control at the <u>system</u> level (TRAQ dampers)

Supply-Air-Temperature (SAT) Reset


- Benefits
 - Decreases compressor energy
 - More hours when economizer provides all necessary cooling (compressors/chiller shut off)
 - Decreases reheat energy
- Drawbacks
 - Increases fan energy
 - May raise humidity level in zones

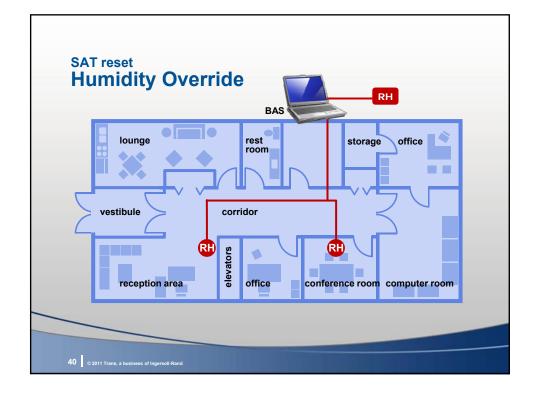
SAT reset based on VAV damper positions **Example #1**

- Benefits of this approach
 - Maximizes fan energy savings by waiting until you have reset the duct SP as low as possible before you raise the SAT setpoint
 - Ensures that no zone is over-heated (starved for air)
- Drawbacks of this approach
 - SAT setpoint may not get reset upward very often, so might not have much impact on reheat energy use
 - Cooling load in every zone needs to be low enough that all VAV dampers are partially closed, even when duct SP setpoint is at minimum


SAT reset based on OA temperature **Example #2**

- When OA temperature > 65°F, no SAT reset
 - When it is this warm outside, the economizer has not likely been activated yet and the cooling load in most zones is likely high enough that reheat is not yet required to prevent overcooling
 - Takes advantage of significant energy savings from unloading supply fan
 - The colder (and drier) supply air allows the system to provide sufficiently dry air to the zones, keeping indoor humidity levels lower
- When OA temperature < 65°F, reset SAT upward (max SAT limit of 60°F)
 - · Supply fan is likely significantly unloaded by this point
 - · Increases benefit of airside economizer, allows compressors to shut off sooner
 - · Reduces any reheat required to prevent overcooling the zones
 - Outdoor air is less humid so the risk of elevating indoor humidity by providing warmer (and wetter) supply air is lessened
- Limiting SAT reset to 60°F allows the system to satisfy cooling loads in interior zones without needing to substantially oversize VAV terminals and ductwork
- Disable SAT reset when outdoor dew point is too high (e.g. above 60°F or 65°F) or when indoor humidity is too high (e.g. above 60% or 65% RH)

36 @ 2011 Trans a business of Ingersoll-Pane


SAT reset based on OA temperature **Example #2**

- Benefits of this approach
 - Achieves fan energy savings by waiting until it is cool outside before raising the SAT setpoint
 - May achieve more reduction reheat energy by not waiting for duct SP to be reset to minimum
- Drawbacks of this approach
 - "Open loop" control does not ensure that a zone is not over-heated (starved for air)

SAT reset based on OA temperature <u>and</u> VAV damper positions **Example #3**

- Benefits of this approach
 - Achieves fan energy savings by waiting until it is cool outside before raising the SAT setpoint
 - May achieve more reduction reheat energy by not waiting for duct SP to be reset to minimum
 - Ensures that no zone is over-heated (starved for air)
- Drawbacks of this approach
 - Both sequences use the same input signal (position of the furthest-open VAV damper), so they require careful coordination

SAT reset Application Considerations

- Will compressor and reheat energy savings outweigh additional fan energy?
- Consider impact on zone humidity
- Design zones with nearly-constant cooling loads for warmer (reset) SAT
 - May require larger VAV terminals and ductwork
 - Allows SAT reset while still providing needed cooling to these zones
- Design an efficient air distribution system
 - · Employ fan-pressure optimization

41 © 2011 Trane, a business of Ingersoll-Rand

Optimized VAV System Controls

- Optimal start/stop
 - · Time-of-day scheduling
- Fan-pressure optimization
- Supply-air-temperature reset
- Ventilation optimization (dynamic reset)
 - Demand-controlled ventilation at zone level
 - Ventilation reset at <u>system</u> level (and TRAQ™ dampers)

dynamic reset approaches – zone level Demand Controlled Ventilation (DCV)

- Estimate current population (Pz) based on:
 - 1. Time-of-day schedule (e.g., when a class is in session)
 - 2. Occupancy sensors (e.g., motion detectors)
 - 3. Actual sense population (e.g., using turnstiles, ticket sales, and so on, or changes in CO₂ levels)
- Find required breathing zone OA flow (Vbz) using estimated population
- Alternatively:
 - CO₂-based: Estimate required breathing zone OA flow (Vbz) directly based on CO₂ levels

43 © 2011 Trane, a business of Ingersoll-Rand

dynamic reset approaches – zone level Demand Controlled Ventilation (DCV)

- Estimate the current OA flow required using CO₂ levels
 - Steady state concentration equation

$$(Cr - Co) = k*m/(Vbz/Pz)$$

Typical straight-line proportional controller

$$Vbz = slope*_{\Delta}CO_{2} + offset$$

44 @ 2011 Trang a business of Ingersoll-Page

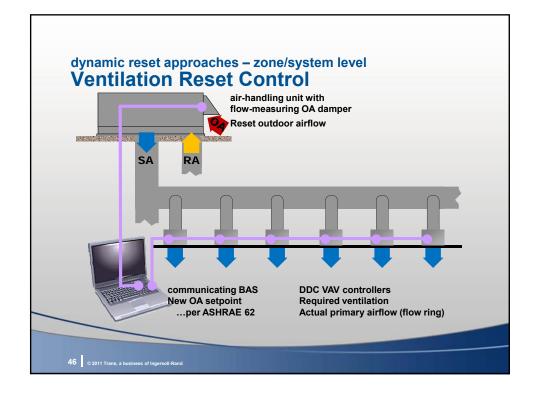
dynamic reset approaches – system level Outdoor Air Intake Flow w/DCV

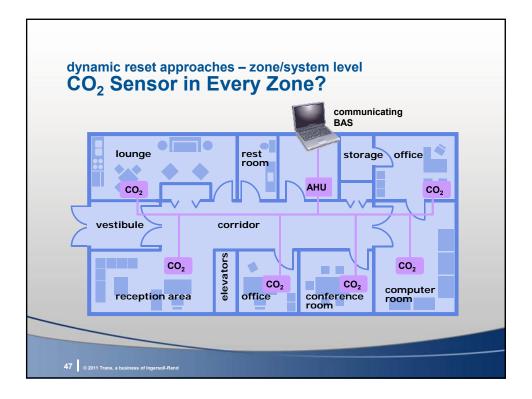
For single zone systems:

$$Vot = \frac{Vbz}{Ez}$$

• For 100% zone systems:

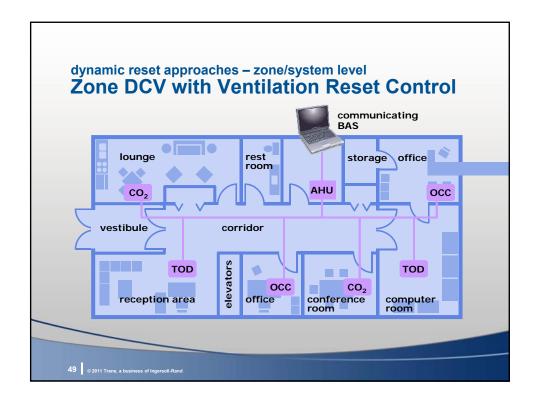
$$Vot = \Sigma_{all\ zones}(Vbz/Ez)$$

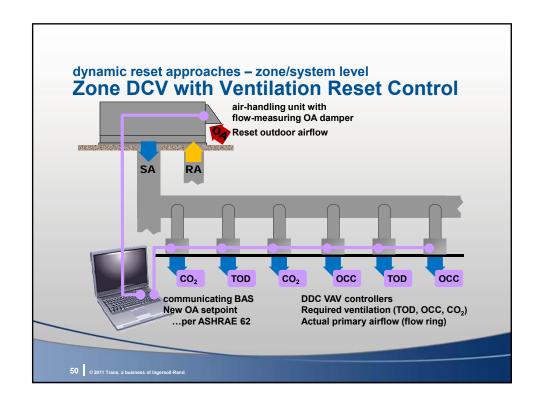

For multiple-zone systems:


$$Vou = \Sigma(Rp^*Pz) + \Sigma(Ra^*Az)$$

$$Zdz_{critical\ zone} = Vbz/Vdz$$

$$Ev = 1 + Vou/Vps - Zdz_{critical zone}$$


Vot = Vou/Ev



CO₂ sensor in every zone **Drawbacks**

- Requires a CO₂ sensor in every zone
 - · Increases installed cost and maintenance
 - Unnecessary use of sensors (CO₂ level doesn't change much in many of the zones, non-critical zones will always be over-ventilated)
 - Increases risk of over-ventilating or under-ventilating
- Requires BAS to poll all sensors to determine OA damper position
- Requires some method to ensure minimum outdoor airflow

ventilation optimization **Benefits**

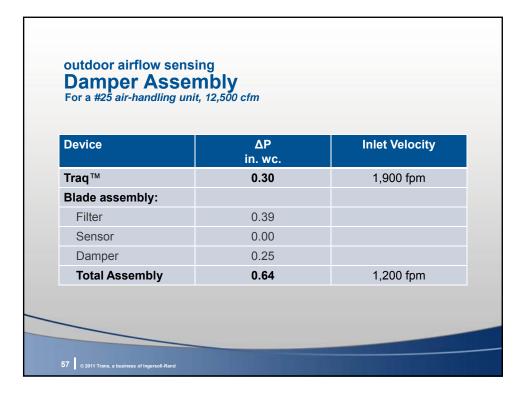
- Saves energy during partial occupancy
- Lower installed cost, less maintenance, and more reliable than installing a CO₂ sensor in every zone
 - Use zone-level DCV approaches where they best fit (CO₂ sensor, occupancy sensor, time-of-day schedule)
 - Combine with ventilation reset at the system level

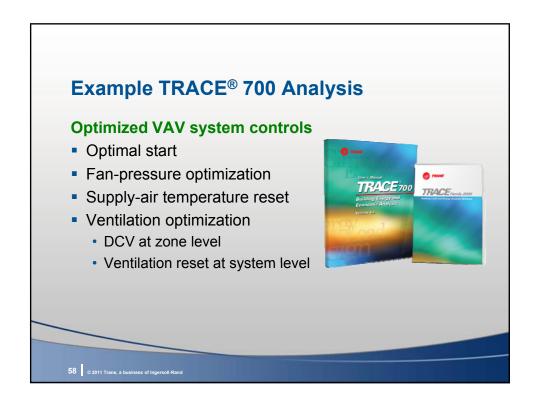
51 © 2011 Trane, a business of Ingersoll-Rand

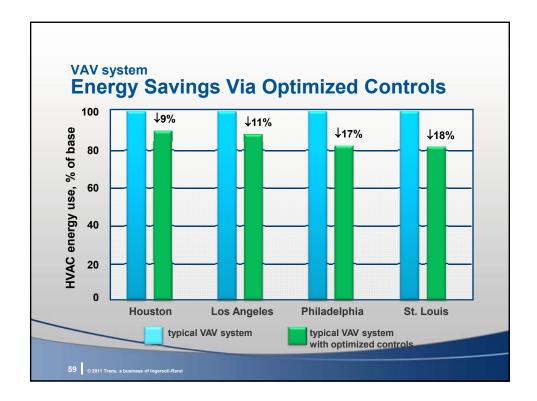
"Occupied Standby" Mode

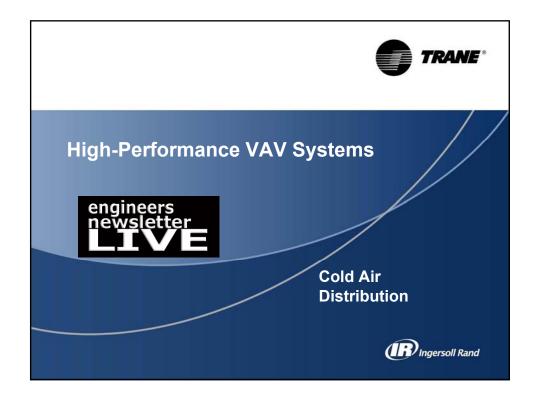
- Use an occupancy sensor to:
 - · Shut off lights
 - Raise/lower zone temperature setpoint by 1°F or 2°F
 - Reduce outdoor airflow requirement
 - Lower minimum airflow setting to reduce or avoid reheat

occupied standby mode **Example** 1000-ft² conference room (design occupancy = 50) occupied standby occupied mode mode Lights off on Zone cooling 75°F 77°F setpoint **Outdoor airflow** 310 cfm 60 cfm required $(R_p \times P_z + R_a \times A_z)$ $(R_a \times A_z)$ Minimum primary 450 cfm 225 cfm airflow setting


outdoor airflow sensing **Damper Assembly**


- Uses proven flow-sensing technology
 - Flow ring senses differential (total inlet to "wake" outlet) pressure), which can be very low
 - Air doesn't enter sensing ports, so filtration isn't needed
 - Transducer auto-calibrates once each minute, to correct for drift due to temperature changes
 - Bell mouth inlet directs air across flow ring to reduce turbulence and pressure drop


© 2011 Trane, a business of Ingersoll-Rand

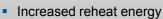

outdoor airflow sensing Damper Assembly

- Accuracy
 - Tested in accordance with AMCA 610 "Airflow Measurement Station Performance"
 - ± 5% of actual airflow
 - Precision maintained from 100% down to 15% of nominal (design) flow (or down to 5% in some configurations)
- Damper leakage
 - · "Low leak" class
 - Meets Std 90.1 requirements

High-Performance VAV Systems Today's Topics

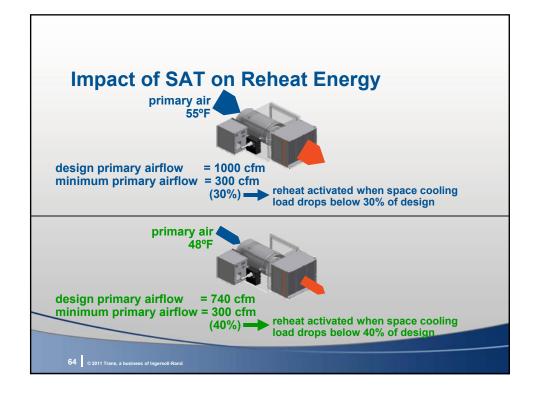
- ASHRAE 189.1 requirements
- Optimized VAV system controls
- Cold-air distribution
- Air-to-air energy recovery
- Other energy-saving strategies
- Energy modeling results
- Summary

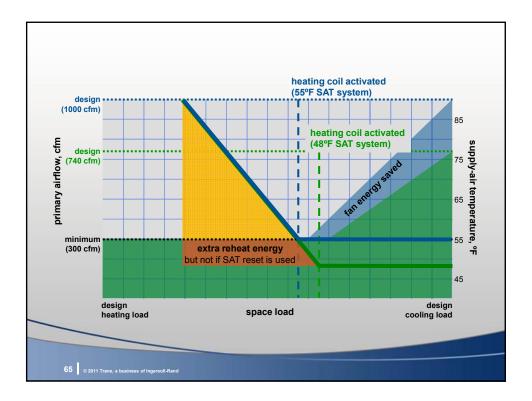
Lower Supply-Air Temperature


Benefits

- Reduces supply airflow
 - Less supply fan energy and less fan heat gain
 - Smaller fans, air handlers, VAV terminals, and ductwork
- Lowers indoor humidity levels

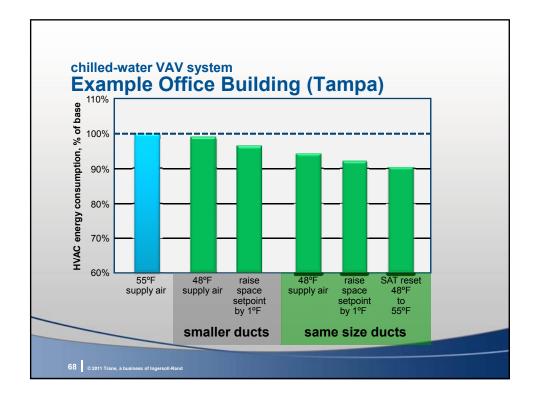
Drawbacks


- Fewer economizer hours

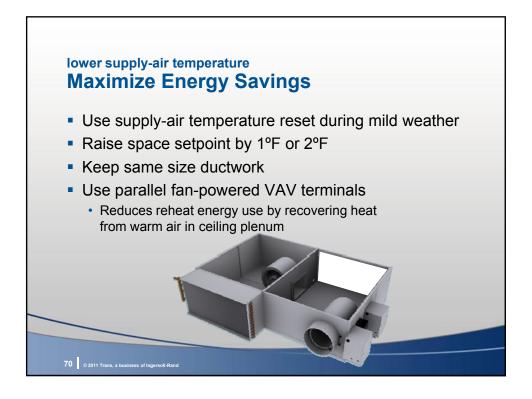


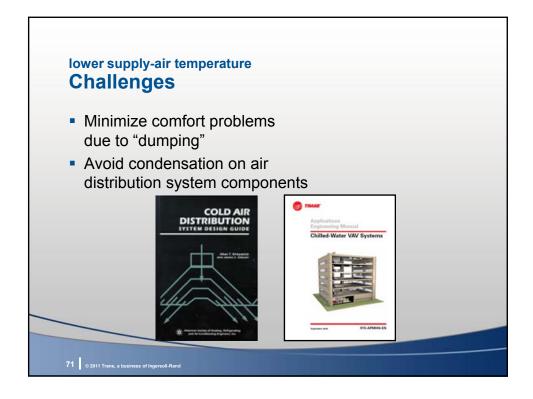
Iower supply-air temperature Maximize Energy Savings

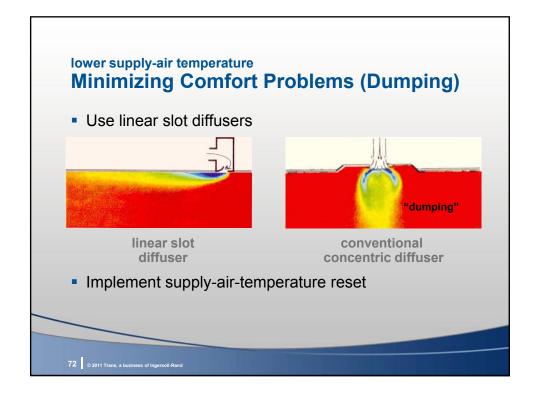
- Use supply-air temperature reset during mild weather
 - · Maximizes benefit of airside economizer
 - · Reduces reheat energy use

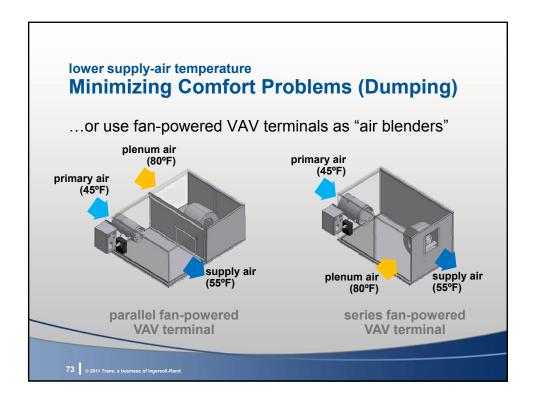

lower supply-air temperature Maximize Energy Savings

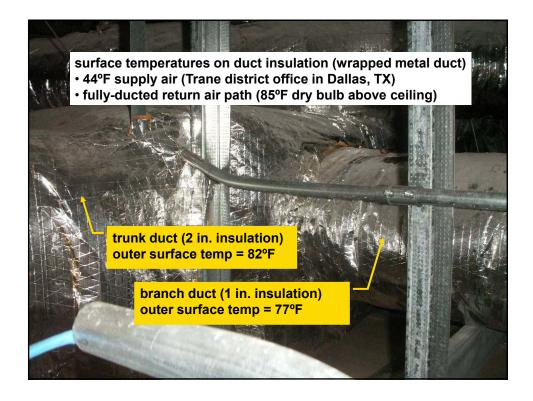
- Use supply-air temperature reset during mild weather
- Raise space setpoint by 1°F or 2°F
 - Lower indoor humidity often allows zone dry-bulb temperature to be slightly warmer
 - · Further reduces airflow and fan energy use


...


Iower supply-air temperature Maximize Energy Savings


- Use supply-air temperature reset during mild weather
- Raise space setpoint by 1°F or 2°F
- Keep same size ductwork
 - · Further reduces fan energy use
 - Allows SAT reset in systems that serve zones with near-constant cooling loads
 - Capable of delivering more airflow if loads increase in the future





lower supply-air temperature **Avoiding Condensation**

 Properly insulate and vapor-seal ductwork, VAV terminals, and supply-air diffusers

74 © 2011 Trane a husiness of Ingersoll-Ran

lower supply-air temperature Avoiding Condensation

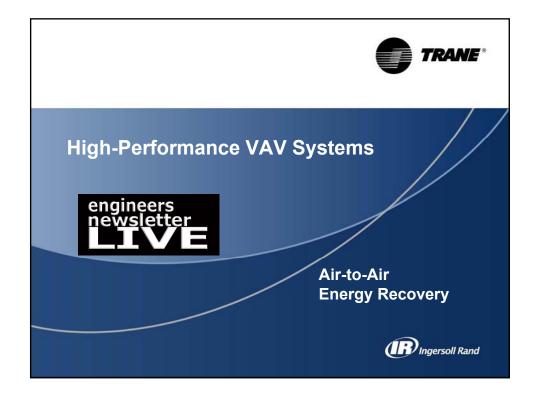
- Properly insulate and vapor-seal ductwork, VAV terminals, and supply-air diffusers
- Use an open ceiling plenum return, if possible
- Maintain positive building pressure to reduce infiltration of humid outdoor air
- Use linear slot diffusers to increase air motion
- Monitor indoor humidity during unoccupied periods and prevent it from rising too high
- During startup, slowly ramp down the supply-air temperature to pull down indoor dew point

76 S 2011 Trans a business of Ingersoll-Band

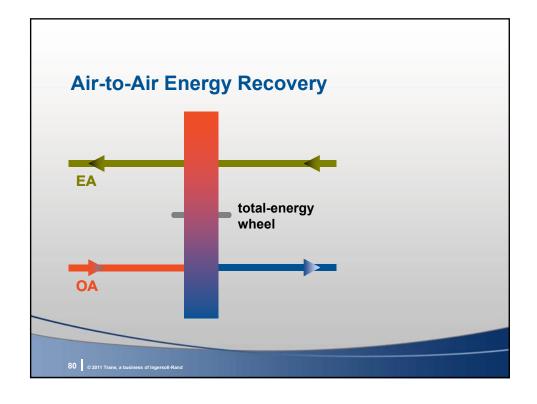
examples Humidity Pull-Down Sequence

SAT ramp-down schedule

limit temperature
2 hours before occupancy 40% of design 55°F
1 hour before occupancy 65% of design 51°F
Scheduled occupancy no limit 48°F


supply airflow

supply-air


SAT ramp-down based on indoor dew point

ex: SAT = current indoor dew point - 3°F

77 © 2011 Trane, a business of Ingersoll-Rand

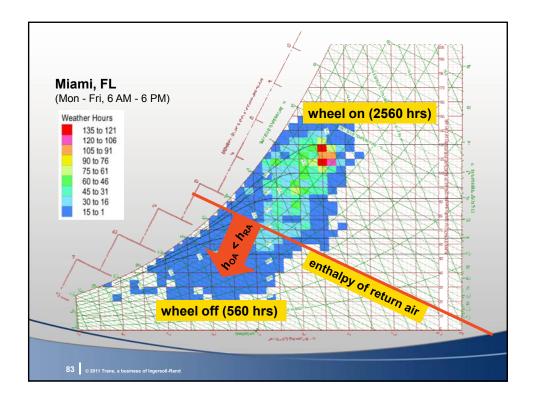
High-Performance VAV Systems Today's Topics ASHRAE 189.1 requirements Optimized VAV system controls Cold-air distribution Air-to-air energy recovery Other energy-saving strategies Energy modeling results Summary

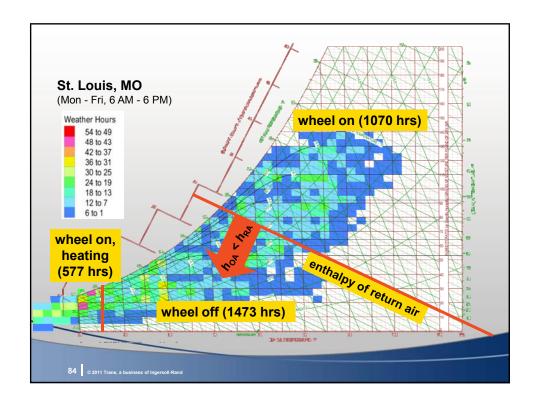
Air-to-Air Energy Recovery

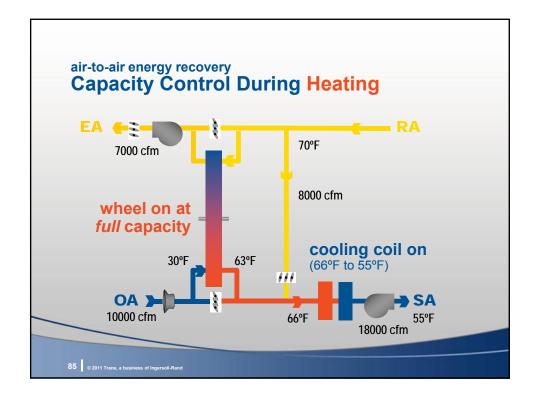
Benefits

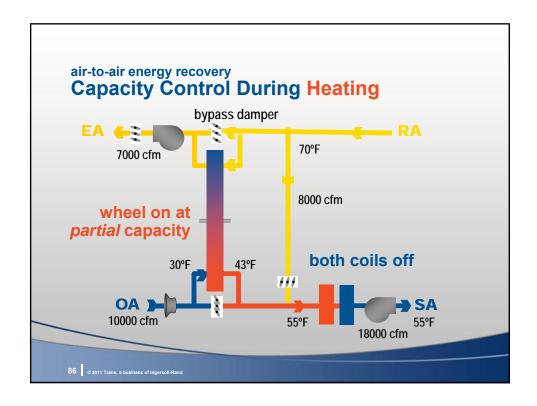
- Reduces cooling, dehumidification, heating, and humidification energy
- Allows equipment downsizing

Drawbacks

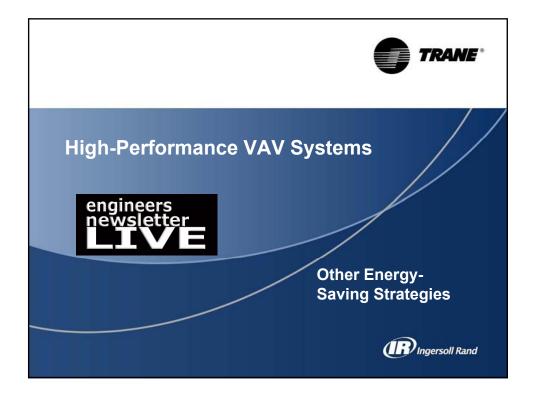

- Increases fan energy
- Requires exhaust air be routed back to the device


81 © 2011 Trane, a business of Ingersoll-Rand


air-to-air energy recovery Considerations for VAV Systems

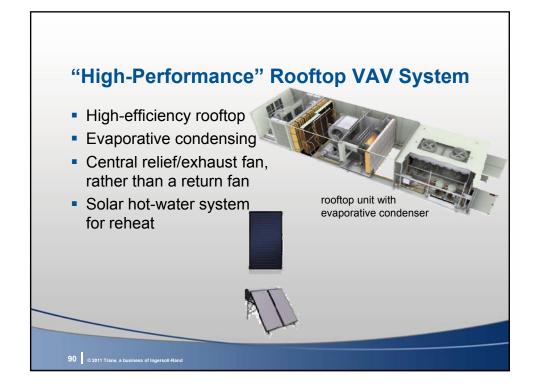

- Size energy-recovery device for minimum outdoor airflow required, not economizing airflow
- Strive for balanced airflows
- Ensure that the device is controlled properly
 - Turn off during mild weather to avoid wasting energy
 - · Provide a means of capacity control during heating
 - · Include bypass dampers for airside economizing

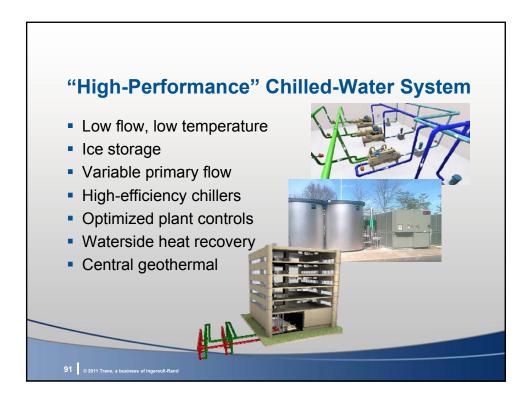
82 @ 2011 Trans a business of Innersoll-Ran

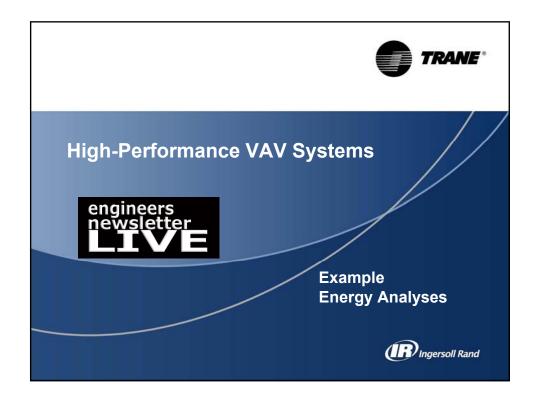


air-to-air energy recovery Considerations for VAV Systems

- Size energy-recovery device for minimum outdoor airflow required, not economizing airflow
- Strive for balanced airflows
- Ensure that the device is controlled properly
 - Turn off during mild weather to avoid wasting energy
 - Provide a means of capacity control during heating
 - · Include bypass dampers for airside economizing
- Provide a method for frost prevention in cold climates


87 © 2011 Trane, a business of Ingersoll-Rand




High-Performance VAV Systems Today's Topics

- ASHRAE 189.1 requirements
- Optimized VAV system controls
- Cold-air distribution
- Air-to-air energy recovery
- Other energy-saving strategies
- Energy modeling results
- Summary

89 © 2011 Trane, a business of Ingersoll-Rane

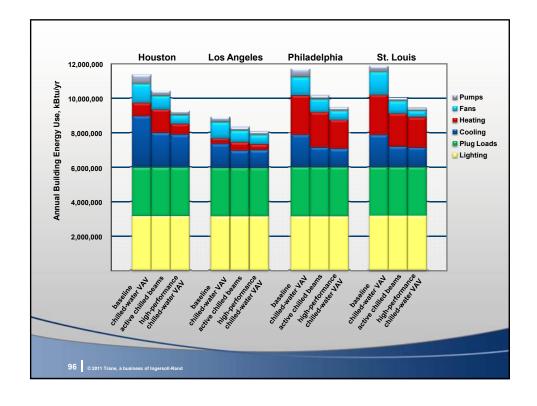
High-Performance VAV Systems **Today's Topics**

- ASHRAE 189.1 requirements
- Optimized VAV system controls
- Cold-air distribution
- Air-to-air energy recovery
- Other energy-saving strategies
- Energy modeling results
- Summary

93 © 2011 Trane, a business of Ingersoll-Rang

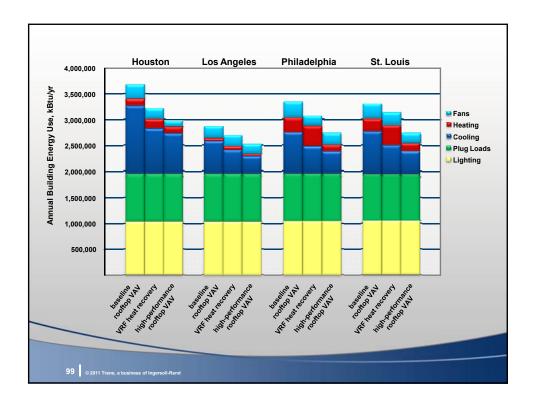
large office building Example Energy Analysis

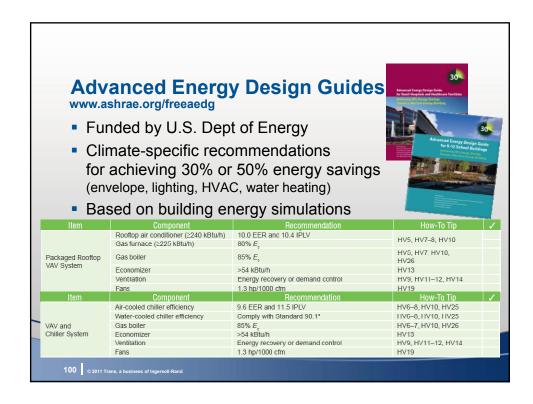
"Baseline" chilled-water VAV system


- Per ASHRAE 90.1-2007, Appendix G
- 55°F supply air

"High-performance" chilled-water VAV system

- 48°F supply air (no downsizing of ductwork)
- Optimized VAV system controls (ventilation optimization, SAT reset)
- Parallel fan-powered VAV terminals
- · Low-flow, water-cooled chiller plant


94 © 2011 Trang a business of Ingersoll-Ran


Large office building Example Energy Analysis (continued) Active chilled beam (ACB) system Four-pipe active chilled beams Separate primary AHUs for perimeter and interior areas (with airside economizers) Water-cooled chiller plant supplying the chilled beams Separate low-flow, water-cooled chiller plant supplying the primary AHUs

**Example Energy Analysis "Baseline" rooftop VAV system • Per ASHRAE 90.1-2007, Appendix G • 55°F supply air "High-performance" rooftop VAV system • High-efficiency, air-cooled packaged rooftop unit • 52°F supply air (no downsizing of ductwork) • Optimized VAV system controls (ventilation optimization, SAT reset) • Parallel fan-powered VAV terminals

small office building Example Energy Analysis (continued) Variable refrigerant flow (VRF) system Heat recovery, air-cooled outdoor units Packaged DX dedicated outdoor-air unit with hot gas reheat

Advanced Energy Design Guides

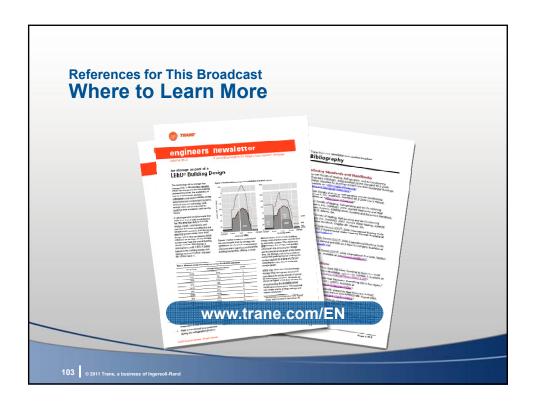
AEDG for Small or Medium Office Buildings

 "High-performance" rooftop VAV systems are included as an option to achieve 50% energy savings

AEDG for K-12 Schools

 Both rooftop VAV and chilled-water VAV systems are included as options to achieve 30% energy savings

AEDG for Small Hospitals and Healthcare Facilities


 Both rooftop VAV and chilled-water VAV systems are included as options to achieve 30% energy savings

101 © 2011 Trane, a business of Ingersoll-Rane

summary **High-Performance VAV Systems**

- Optimized VAV system controls
- Cold-air distribution
- Air-to-air energy recovery
- Other energy-saving strategies

102 © 2011 Trans a business of Ingersoll-Rand

LEED Continuing Education Courses

on-demand, no charge, 1.5 CE credits

- ASHRAE Standards 62.1 and 90.1 and VAV Systems
- ASHRAE standard 62.1: Ventilation Rate Procedure
- ASHRAE 90.1-2010
- Energy Saving Strategies for Rooftop VAV Systems
- Air-Handing Systems, Energy and IAQ
- Central Geothermal System Design and Control
- Ice Storage Design and Control

www.trane.com/ContinuingEducation

105

© 2011 Trane, a business of Ingersoll-Rand

2011 ENL Programs

- March
 Upgrading Existing Chilled-Water Systems
- June
 High-Performance VAV Systems
- October
 Dedicated Outdoor-Air Units

106

2011 Trane, a business of Ingersoll-Rand

Trane Engineers Newsletter Live program

Bibliography

8 June 2011

High-Performance VAV Systems

Industry Standards

- American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). ANSI/ASHRAE Standard 62.1-2010: Ventilation for Acceptable Indoor Air Quality.

 Available at www.ashrae.org/bookstore
- American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). ANSI/ASHRAE IESNA Standard 90.1-2010: Energy Standard for Buildings Except Low-Rise Residential Buildings. Available at www.ashrae.org/bookstore
- American Society of Heating, Refrigerating, and Air-Conditioning Engineers (ASHRAE). ANSI/ASHRAE/USGBC/IES Standard 189.1-2009: Standard for the Design of High-Performance Green Buildings Except Low-Rise Residential Buildings. Available at www.ashrae.org/bookstore

Industry Articles, Papers, and Publications

- Advanced Energy Design Guides < www.ashrae.org/aedg >
- American Society of Heating, Refrigeration and Air-Conditioning Engineers, Inc. (ASHRAE). 1996. Cold Air Distribution System Design Guide. Atlanta, GA: ASHRAE.
- California Energy Commission (CEC). 2003. Advanced Variable Air Volume System Design Guide. Sacramento, CA: CEC.
- Murphy, J. and N. Maldeis, "Using Time-of-Day Scheduling to Save Energy," ASHRAE Journal 51(5), May 2009, pp. 42-48.
- Stanke, D., "System Operation: Dynamic Reset Options," ASHRAE Journal 48(12), December 2006, pp 18–32.
- Stanke, D., "Single-Path Multiple-Zone System Design," ASHRAE Journal 47(1) January 2005, pp 28-35.
- Wei, G., Liu, M., and D. Claridge, "Optimize the Supply Air Temperature Reset Schedule for a Single-Duct VAV System," *Proceedings of the Twelfth Symposium on Improving Building Systems in Hot and Humid Climates*, San Antonio, TX, May 2000.

Trane Application Manuals

available to purchase from < www.trane.com/bookstore >

- Murphy, J. and J. Harshaw. *Rooftop VAV Systems*, application manual SYS-APM007-EN, November 2009.
- Murphy, J. and B. Bakkum. *Chilled-Water VAV Systems*, application manual SYS-APM008-EN, September 2009.
- Murphy, J. and B. Bradley. *Air-to-Air Energy Recovery*, application manual SYS-APM003-EN, September 2008.

Trane Engineers Newsletter Live program

Bibliography

June 2011

High-Performance VAV Systems

Trane Engineers Newsletters

available to download from < www.trane.com/engineersnewsletter>

- Eppelheimer, D. "Cold Air Makes Good \$ense." Engineers Newsletter 29-2 (2000).
- Murphy, J. "CO₂-Based Demand-Controlled Ventilation with ASHRAE Standard 62.1." *Engineers Newsletter* 34-5 (2005).
- Murphy, J. "Energy-Saving Control Strategies for Rooftop VAV Systems." Engineers Newsletter 35-4 (2006).
- Stanke, D. "Potential ASHRAE Standard Conflicts: Indoor Air Quality and Energy Standards." *Engineers Newsletter* 37-4 (2008).
- Stanke, D. "VAV System Optimization: Critical Zone Reset." *Engineers Newsletter* 20-2 (1991).

Trane Engineers Newsletter Live Broadcasts

available to view online at < www.trane.com/ENL>

- Stanke, D., Schwedler, M., Taylor, S., and J. Harshaw, "ASHRAE Standards 62.1 and 90.1, and VAV Systems," *Engineers Newsletter Live* broadcast (November 2008).
- Murphy, J., Stanke, D., Lee, T., and M. Schwedler, "CO2-Based Demand-Controlled Ventilation," *Engineers Newsletter Live* broadcast (November 2005).